PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Czasopismo

2019 | 72 | 1 |

Tytuł artykułu

Chitosan biostimulant controls infection of cucumber by Phytophthora capsici through suppression of asexual reproduction of the pathogen

Treść / Zawartość

Warianty tytułu

PL
Biostymulant chitozan kontroluje zakażenie ogórka przez Phytophthora capsici poprzez hamowanie bezpłciowego rozmnażania patogen

Języki publikacji

EN

Abstrakty

EN
The biopolymer chitosan is a derivative of chitin, which can promote plant growth and protect plants from phytopathogens. This study aimed to evaluate the efficacy of chitosan as a biostimulant and a biorational agent to protect cucumber plants from damping-off disease caused by Phytophthora capsici. Cucumber seeds were treated with a range of chitosan concentrations, viz. 0, 125, 250, and 500 ppm, to evaluate effect on seed germination and fresh root and shoot weight of the seedlings. Chitosan significantly (p ≤ 0.05) enhanced seed germination and root and shoot growth of cucumber in a dose-dependent manner up to 500 ppm. Application of in vitro chitosan suspension onto P. capsici mycelial plug suppressed growth of mycelia, formation of sporangia, and release of P. capsici zoospores at 125–500 ppm concentrations. Cucumber seedlings from chitosan-treated seeds showed enhanced resistance to damping-off disease caused by P. capsici compared to untreated control. Cucumber seedlings from 500 ppm chitosan seed treatment showed 100% disease resistance against damping off caused by P. capsici. These results suggest that chitosan could be used as a natural and environmentally safe alternative to a synthetic growth promoter and pesticide for sustainable production of cucumber.
PL
Biopolimer chitozan jest pochodną chityny, może on stymulować wzrost roślin i chronić je przed fitopatogenami. Celem badań była ocena skuteczności chitozanu jako biostymulatora i „bioracjo-nalnego” środka ochrony ogórka przed zgorzelą wywołaną przez Phytophthora capsici. Nasiona ogórka poddano działaniu różnych stężeń chitozanu tj. 0, 125, 250 i 500 ppm w celu oceny ich wpływu na kiełkowanie nasion oraz świeżą masę korzeni i pędów siewek. Chitozan istotnie (p ≤ 0,05) stymulował kiełkowanie nasion oraz wzrost korzeni i pędów ogórka w sposób zależny od dawki do 500 ppm. Zastosowanie zawiesiny chitozanu w zakresie stężeń 125–500 ppm w warunkach in vitro hamowało wzrost grzybni P. capsici, tworzenie sporangiów i uwalnianie zoospor P. capsici. Siewki roślin uzyskanych z nasion traktowanych chitozanem charakteryzowały się zwiększoną odpornością na zgorzel wywołaną przez P. capsici w porównaniu z nietraktowanych chitozanem. Siewki ogórków z nasion traktowanych 500 ppm chitozanu wykazywały 100% odporność na zgorzel powodowaną przez P. capsici. Wyniki te sugerują, że chitozan może być stosowany jako naturalna i bezpieczna dla środowiska alternatywa dla syntetycznych stymulatorów wzrostu oraz pestycydów w zrównoważonej produkcji ogórka.

Słowa kluczowe

Wydawca

-

Czasopismo

Rocznik

Tom

72

Numer

1

Opis fizyczny

Article: 1763 [8 p.], fig.,ref.

Twórcy

autor
  • Department of Plant Pathology, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh
autor
  • Department of Biotechnology, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh
autor
  • Department of Agriculture, Noakhali Science and Technology University, Noakhali 3814, Bangladesh
  • Department of Biotechnology, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh
autor
  • Department of Plant Pathology, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh
autor
  • Extension Service, West Virginia University, Morgantown, WV 26506, USA
autor
  • Department of Biotechnology, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh

Bibliografia

  • 1.Pandey P, Verma MK, De N. Chitosan in agricultural context – a review. Bulletin of Environment, Pharmacology and Life Sciences. 2018;7(4):87–96.
  • 2.Palma-Guerrero J, Jansson HB, Salinas J, Lopez-Llorca LV. Effect of chitosan on hyphal growth and spore germination of plant pathogenic and biocontrol fungi. J Appl Microbiol. 2008;104:541–553.
  • 3.Palma-Guerrero J, Huang IC, Jansson HB, Salinas J, Lopez-Llorca LV, Read ND. Chitosan permeabilizes the plasma membrane and kills cells of Neurospora crassa in an energy dependent manner. Fungal Genet Biol. 2009;46:585–594. https://doi.org/10.1016/j.fgb.2009.02.010
  • 4.Palma-Guerrero J, Lopez-Jimenez JA, Pérez-Berná AJ, Huang IC, Jansson HB, Salinas J, et al. Membrane fluidity determines sensitivity of filamentous fungi to chitosan. Mol Microbiol. 2010;75(4):1021–1032. https://doi.org/10.1111/j.1365-2958.2009.07039.x
  • 5.Hasan O, Chang T. Chitosan for eco-friendly control of plant disease. Asian J Plant Pathol. 2018;11:53–70.
  • 6.Pirbalouti AG, Malekpoor F, Salimi A, Golparvar A. Exogenous application of chitosan on biochemical and physiological characteristics, phenolic content and antioxidant activity of two species of basil Ocimum ciliatum and Ocimum basilicum under reduced irrigation. Sci Hortic. 2017;217:114–122. https://doi.org/10.1016/j.scienta.2017.01.031
  • 7.Rahman M, Mukta JA, Sabir AA, Gupta DR, Mohi-Ud-Din M, Hasanuzzaman M, et al. Chitosan biopolymer promotes yield and stimulates accumulation of antioxidants in strawberry fruit. PLoS One. 2018;13(9):e0203769. https://doi.org/10.1371/journal.pone.0203769
  • 8.Asgari-Targhi G, Iranbakhsh A, Ardebili ZO. Potential benefits and phytotoxicity of bulk and nano-chitosan on the growth, morphogenesis, physiology, and micropropagation of Capsicum annuum. Plant Physiol Biochem. 2018;127:393–402. https://doi.org/10.1016/j.plaphy.2018.04.013
  • 9.Khatun A, Farhana T, Sabir AA, Islam SMN, West HM, Rahman M, et al. Pseudomonas and Burkholderia inhibit growth and asexual development of Phytophthora capsici. Zeitschrift fuer Naturforschung. 2018;73(3–4):123–135. https://doi.org/10.1515/znc-2017-0065
  • 10.Deacon JW, Donaldson SP. Molecular recognition in the homing responses of zoosporic fungi, with special reference to Pythium and Phytophthora. Mycology Research. 1993;97:1153–1171. https://doi.org/10.1016/S0953-7562(09)81278-1
  • 11.Islam MT, Hossain MM. Biological control of peronosporomycete phytopathogen by bacterial antagonist. In: Maheshwari DK, editor. Bacteria in agrobiology and disease management. Berlin: Springer; 2013. p. 167–218. https://doi.org/10.1007/978-3-642-33639-3_7
  • 12.Fernández-Ortuño D, Pérez-García A, López-Ruiz F, Romero D, de Vicente A, Torés JA. Occurrence and distribution of resistance to QoI fungicides in populations of Podosphaera fusca in south central Spain. Eur J Plant Pathol. 2006;115:215–222. https://doi.org/10.1007/s10658-006-9014-7
  • 13.Zohara F, Akanda MAM, Paul NC, Rahman M, Islam MT. Inhibitory effects of Pseudomonas spp. on plant pathogen Phytophthora capsici in vitro and in planta. Biocatal Agric Biotechnol. 2016;5:69–77. https://doi.org/10.1016/j.bcab.2015.12.009
  • 14.Islam MT, von Tiedemann A. 2,4-Diacetylphloroglucinol suppresses zoosporogenesis and impairs motility of Peronosporomycete zoospores. World Journal of Microbial Biotechnology. 2011;27:2071–2079. https://doi.org/10.1007/s11274-011-0669-7
  • 15.Islam MT, Hashidoko Y, Deora A, Ito T, Tahara S. Suppression of damping off disease in host plants by the rhizoplane bacterium Lysobacter sp. strain SB-K88 is linked to plant colonization and antibiosis against soilborne Peronosporomycetes. Applied Environmental Microbiology. 2005;71:3786–3796. https://doi.org/10.1128/AEM.71.7.3786-3796.2005
  • 16.Tareq FS, Hasan CM, Lee HS, Lee YJ, Lee JS, Surovy MZ, et al. Gageopeptins A and B, new inhibitors of zoospore motility of the phytopathogen Phytophthora capsicifrom a marine-derived bacterium Bacillus sp. 109GGC020. Bioorg Med Chem Lett. 2015;25:3325–3329. https://doi.org/10.1016/j.bmcl.2015.05.070
  • 17.Islam S, Akanda AM, Prova A, Islam MT, Hossain MM. Isolation and identification of plant growth promoting rhizobacteria from cucumber rhizosphere and their effect on plant growth promotion and disease suppression. Front Microbiol. 2016;6:1360. https://doi.org/10.3389/fmicb.2015.01360
  • 18.Mukta JA, Rahman M, Sabir AA, Gupta DR, Surovy MZ, Rahman M, et al. Chitosan and plant probiotics application enhance growth and yield of strawberry. Biocatal Agric Biotechnol. 2017;11:9–18. https://doi.org/10.1016/j.bcab.2017.05.005
  • 19.Long LT, Tan LV, Boi VN, Trung TS. Antifungal activity of water-soluble chitosan against Colletotrichum capsici in postharvest chili pepper. J Food Process Preserv. 2017;2017:e13339. https://doi.org/10.1111/jfpp.13339
  • 20.Nguyen VT, Tran KVQ, Tran QN. Effect of oligochitosan-coated silver nanoparticles (OCAgNPs) on the growth and reproduction of three species Phytophthora in vitro. Archives of Phytopathology and Plant Protection. 2018;51(5–6):227–240. https://doi.org/10.1080/03235408.2018.1458394
  • 21.Xu J, Zhao X, Han X, Du Y. Antifungal activity of oligochitosan against Phytophthora capsici and other plant pathogenic fungi in vitro. Pestic Biochem Physiol. 2007;87:220–228. https://doi.org/10.1016/j.pestbp.2006.07.013
  • 22. Sunpapao A, Pornsuriya C. Effects of chitosan treatments on para rubber leaf fall disease caused by Phytophthora palmivora Butler – a laboratory study. Songklanakarin Journal of Science and Technology. 2004;36:507–512.
  • 23.Meng X, Yang L, Kennedy JF, Tian S. Effects of chitosan and oligochitosan on growth of two fungal pathogens and physiological properties in pear fruit. Carbohydr Polym. 2010;81:70–75. https://doi.org/10.1016/j.carbpol.2010.01.057
  • 24.Guan YJ, Hu J, Wang, Xian J, Shao, Chen-xia. Seed priming with chitosan improves maize germination and seedling growth in relation to physiological changes under low temperature stress. J Zhejiang Univ Sci. 2009;10(6):427–433. https://doi.org/10.1631/jzus.B0820373
  • 25.Sathiyabama MG, Akila R, Einstein C. Chitosan-induced defense responses in tomato plants against early blight disease caused by Alternaria solani (Ellis and Martin) Sorauer. Archives of Phytopathology and Plant Protection. 2014;47(14):1777–1787. https://doi.org/10.1080/03235408.2013.858423
  • 26.Al-tawaha ARM, Al-ghzawi ALA. Effect of chitosan coating on seed germination and salt tolerance of lentil (Lens culinaris L.). Research on Crops. 2013;14(2):489–491.
  • 27.O’Herlihy EA, Duffy EM, Cassells AC. The effects of arbuscular mycorrhizal fungi and chitosan sprays on yield and late blight resistance in potato crops from microplants. Folia Geobot. 2003;38:201–207. https://doi.org/10.1007/BF02803152
  • 28.Cho YH, Choi GJ, Kim BS, Jang KS, Yoon MY, Park MS, et al. Control of late blight of tomato and potato by oilgochitosan. Research in Plant Disease. 2011;17:129–135. https://doi.org/10.5423/RPD.2011.17.2.129
  • 29.Eikemo H, Stensvand A, Tronsmo AM. Induced resistance as a possible means to control diseases of strawberry caused by Phytophthora spp. Plant Dis. 2003;87:345–350. https://doi.org/10.1094/PDIS.2003.87.4.345

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-438c58ec-78b2-43dd-bd54-a7327f7d1b46
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.