PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2019 | 79 | 2 |

Tytuł artykułu

The effect of bupropion augmentation of minocycline in the treatment of depression

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The aim of the current study was to analyse the augmentation of minocycline with bupropion in treating depression. ‘Saline’ (10 ml/kg), ‘minocycline per se’ (25 mg/kg), ‘minocycline per se’ (50 mg/kg), ‘bupropion per se’ (5 mg/kg), ‘bupropion per se’ (10 mg/kg) and ‘bupropion + minocycline’ (5 mg/kg + 25 mg/kg each) were administered to mice via the intraperitoneal route. In the forced swim and tail suspension test, the immobility period was analysed after 30 min of the treatment. Monoamines like dopamine, norepinephrine and serotonin levels were analysed in brain areas such as the whole brain, hippocampus and cerebral cortex using an HPLC-fluorescence detector. Euthanasia of mice was performed 1 h after treatment. Comparison between the control group and combination therapy and other standard drug groups showed a significant decrease in immobility in both antidepressant animal models. The combination of bupropion and minocycline showed greater benefits with respect to a reduction in the immobility time period and enhancement of dopamine, serotonin, and norepinephrine levels in the cerebral cortex, hippocampus and the whole brain when compared to the monotherapy treated groups. Hence, the side effects may be reduced drastically through this combination by a reduction in the bupropion/minocycline dosage.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

79

Numer

2

Opis fizyczny

p.217-224,fig.,ref.

Twórcy

autor
  • Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM’s NMIMS, Mumbai, India
autor
  • Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM’s NMIMS, Mumbai, India
autor
  • Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM’s NMIMS, Mumbai, India
  • SVKM’S Shri C. B. Patel Research Centre, Bhakti Vedanta Swami Marg, Mumbai, India
autor
  • Department of Pharmacology, SVKM’S Dr. Bhanuben Nanavati College of Pharmacy, Mithibai Campus, Mumbai, India

Bibliografia

  • Ahuja M, Bishnoi M, Chopra K (2008) Protective effect of minocycline, a semi-synthetic second-generation tetracycline against 3-nitropropionic acid (3-NP)-induced neurotoxicity. Toxicology 244: 111–122.
  • Amorim D, Puga S, Bragança R, Braga A, Pertovaara A, Almeida A, Pinto-Ribeiro F (2017) Minocycline reduces mechanical allodynia and depressive-like behaviour in type-1 diabetes mellitus in the rat. Behav Brain Res 327: 1–10.
  • Ascher JA, Cole JO, Colin JN, Feighner JP, Ferris RM, Fibiger HC, Golden RN, Martin P, Potter WZ, Richelson E (1995) Bupropion: a review of its mechanism of antidepressant activity. J Clin Psychiatry 56: 395 –401.
  • Bondy B (2002) Pathophysiology of depression and mechanisms of treatment. Dialogues Clin Neurosci 4: 7–20.
  • Choudhary KM, Mishra A, Poroikov VV, Goel RK (2013) Ameliorative effect of curcumin on seizure severity, depression like behaviour, learning and memory deficit in post-pentylenetetrazole-kindled mice. Eur J Pharmacol 704: 33–40.
  • Cryan JF, Mombereau C, Vassout A (2005) The tail suspension test as a model for assessing antidepressant activity : Review of pharmacological and genetic studies in mice. Neurosci Behav Rev 29: 571–625.
  • Deak T, Bellamy C, Agostino LGD, Rosanoff M, Mcelderry NK, Bordner KA (2005) Behavioral responses during the forced swim test are not affected by anti-inflammatory agents or acute illness induced by lipopolysaccharide. Behav Brain Res 160: 125–134.
  • Dean OM, Kanchanatawan B, Ashton M, Mohebbi M, Ng CH, Maes M, Berk L, Sughondhabirom A, Tangwongchai S, Singh AB, McKenzie H, Smith DJ, Malhi GS, Dowling N, Berk M (2017) Adjunctive minocycline treatment for major depressive disorder: A proof of concept trial. Aust N Z J Psychiatry 51: 829–840.
  • Du Y, Ma Z, Lin S, Dodel RC, Gao F, Bales KR, Triarhou LC, Chernet E, Perry KW, Nelson DL, Luecke S, Phebus LA, Bymaster FP, Paul SM (2001) Minocycline prevents nigrostriatal dopaminergic neurodegeneration in the MPTP model of Parkinson’s disease. Proc Natl Acad Sci 98: 14669–14674.
  • Ferris RM, Cooper B (1993) Mechanism of antidepressant activity of bupropion. J Clin Psychiatry Monogr 11: 2–14.
  • Henry CJ, Huang Y, Wynne A, Hanke M, Himler J, Bailey MT, Sheridan JF, Godbout JP (2008) Minocycline attenuates lipopolysaccharide (LPS)-induced -induced neuroinflammation, sickness behavior, and anhedonia. J Neuroinflammation 5: 1–14.
  • Hubbard R (2005) Bupropion and the risk of sudden death: a self-controlled case-series analysis using The Health Improvement Network. Thorax 60: 848–850.
  • Husain MI, Chaudhry IB, Husain N, Khoso AB, Rahman RR, Hamirani MM, Hodsoll J, Qurashi I, Deakin JFW, Young AH (2017) Minocycline as an adjunct for treatment-resistant depressive symptoms: a pilot randomised placebo-controlled trial. J Psychopharmacol 31: 1166–1175.
  • Jefferson JW, Pradko JF, Muir KT (2005) Bupropion for major depressive disorder: Pharmacokinetic and formulation considerations. Clin Ther 27: 1685-1695.
  • Kale PP, Addepalli V (2014) Augmentation of antidepressant effects of duloxetine and bupropion by caffeine in mice. Pharmacol Biochem Behav 124: 238–244.
  • Kale PP, Addepalli V, Sarkar A, Patel S, Savai J (2014) The combination of antidepressant duloxetine with piracetam in mice does not produce enhancement of nootropic activity. Exp Neurobiol 23: 224–230.
  • Kara H, Ak A, Bayır A, Acar D, Istanbulluoğlu R, Değirmenci S (2013) Seizures after overdoses of bupropion intake. Balkan Med J 30: 248–249.
  • Lakshmana MK, Raju TR (1997) An isocratic assay for norepinephrine, dopamine, and 5-hydroxytryptamine using their native fluorescence by high-performance liquid chromatography with fluorescence detection in discrete brain areas of rat. Anal Biochem 246: 166–170.
  • López-Rubalcava C, Lucki I (2000) Strain differences in the behavioral effects of antidepressant drugs in the rat forced swimming test. Neuropsychopharmacology 22: 191–199.
  • Lucki I (1997) The forced swimming test as a model for core and component behavioural effects of antidepressant drugs. Behav Pharmacol 8: 523–532.
  • Lucki I, Dalvi A, Mayorga AJ (2001) Sensitivity to the effects of pharmacologically selective antidepressants in different strains of mice. Psychopharmacology 155: 315–322.
  • Mojtabai R (2009) Unmet need for treatment of major depression in the United States. Psychiatr Serv 60: 297–305.
  • Molina-Hernández M, Tellez-Alcántara NP, Pérez-García J, Olivera-Lopez JI, Jaramillo-jaimes MT (2008) Antidepressant-like actions of minocycline combined with several glutamate antagonists. Prog Neuropsychopharmacol Biol Psychiatry 32: 380–386.
  • Nelis HJ, De Leenheer AP (1982) Metabolism of minocycline in humans. Drug Metab Dispos 10: 142–146.
  • Piacentini MF, Clinckers R, Meeusen R, Sarre S, Ebinger G, Michotte Y, Ebinger G, Effect YM (2003) Effect of bupropion on hippocampal neurotransmitters and on peripheral hormonal concentrations in the rat. J Appl Physiol 95: 652–656.
  • Porsolt RD, Bertin A, Jalfre M (1978) Behavioural Despair in rats and mice: Strain differences and the effects of Imipramine. Eur J Pharmacol 51: 291–294.
  • Reis DJ, Casteen EJ, Ilardi SS (2019) The antidepressant impact of minocycline in rodents : A systematic review and meta-analysis. Sci Rep 9: 261.
  • Richelson E (2013) Multi-modality : a new approach for the treatment of major depressive disorder. Int J Neuropsychopharmacol 16: 1433–1442.
  • Soczynska JK, Mansur RB, Brietzke E, Swardfager W, Kennedy SH, Woldeyohannes HO, Powell AM, Manierka MS, McIntyre RS (2012) Novel therapeutic targets in depression: Minocycline as a candidate treatment. Behav Brain Res 235: 302–317.
  • Stahl SM, Pradko JF, Haight BR, Modell JG, Rockett CB, Learned-Coughlin S (2004) A review of the neuropharmacology of bupropion, a dual norepinephrine and dopamine reuptake inhibitor. Prim Care Companion J Clin Psychiatry 6: 159–166.
  • Thase ME, Pritchett L, Ossanna MJ, Swindle RW, Xu J, Detke MJ (2007) Efficacy of duloxetine and selective serotonin reuptake inhibitors depressive disorder. J Clin Psychopharmacol 27: 672–676.
  • Thiébot M, Martin P, Puech A (1992) Animal behavioural studies in the evaluation of antidepressant drugs. Br J Psychiatry 160: 44–50.
  • Ulloa R, Díaz-Valderrama A, Herrera-Pérez J, León-Olea M, MartínezMota L (2014) Age differences in the impact of forced swimming test on serotonin transporter levels in lateral septum and dorsal raphe. Behav Brain Funct 10: 1–8.
  • Vogel HG (2008) Drug Discovery and Evaluation: Pharmacological Assays. Springer-Verlag Berlin Heidelberg.
  • Weiss JM, Kilts CD (1995) Animal models of depression and schizophrenia. In: The American Psychiatric Press Textbook of Psychopharmacology (Schatzberg AF and Nemeroff CB (Eds.), Washington, DC, p. 89–131. Willner P (1990) Animal models of depression: an overview. Pharmacol Ther 45: 425–455.
  • Zhang L, Kitaichi K, Fujimoto Y, Nakayama H (2006a) Protective effects of minocycline on behavioral changes and neurotoxicity in mice after administration of methamphetamine. Prog Neuropsychopharmacol Biol Psychiatry 30: 1381–1393.
  • Zhang L, Shirayama Y, Shimizu E, Iyo M, Hashimoto K (2006b) Protective effects of minocycline on serotonergic and dopaminergic neurons of mouse brain. Eur J Pharmacol 544: 1–9.
  • Zheng L, Kaneko N, Sawamoto K (2015) Minocycline treatment ameliorates interferon-alpha- induced neurogenic defects and depression-like behaviors in mice. Front Cell Neurosci 9: 5

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-42e19836-6962-4f25-95d4-3bd01e71b4a2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.