PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2014 | 70 | 10 |

Tytuł artykułu

Fundectomy, antrectomy and gastrectomy influence densitometric, tomographic and mechanical bone properties as well as serum ghrelin and nesfatin-1 levels in rats

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The aim of the present study was to examine the influence of gastrectomy, fundectomy, and antrectomy on bone properties and changes in the levels of ghrelin and nesfatin-1 in rats, as well as to reveal their potential influence on bone metabolism. Twenty-four 2.5-month-old male Wistar rats were divided into four groups: sham-operated animals (SHO) and those subjected to gastrectomy (Gx), fundectomy (Fx), and antrectomy (ANT). After a six-week experiment, the rats were sacrificed, and blood was collected for further nesfatin-1 and ghrelin analysis in serum (RIA methods). The tBMC and tBMD of the whole skeleton, as well as the BMD and BMC of isolated femora, were measured by the DXA method. The femora were also examined by the pQCT method (area, mineral content, volumetric density of the trabecular and cortical parts of diaphysis and distal metaphysis) and by mechanical tests. Gx and ANT induced a decrease in BMD, ultimate force and work to failure of the femur, Tot.vBMD and Ct.Th of the femoral diaphysis, and Tot. BMC, Tot.vBMD, Tot.Ar, and Tb.BMC of femoral metaphysis. Fx lowered Tot.BMC, Tot.Ar, and Tb.BMC of metaphysis. The reduction in Tot.vBMD, Tot.Ar, and Tb.BMC of metaphysis after Gx was greater than after Fx. Moreover, the metaphyseal Tot.Ar and Tb.BMC of the Gx rats were lower than those in the ANT rats. The serum ghrelin concentration was reduced by antrectomy (by 57%), fundectomy (by 71%), and gastrectomy (by 76%). Conversely, the serum level of nesfatin-1 was increased in all the experimental groups (by 28%, 40%, and 65% in Fx, Gx, and ANT, respectively). In conclusion, our data indicate that the removal of different parts of the stomach caused negative changes in bone strength as well as in DXA and pQCT parameters. The Gx-evoked osteopenia and deterioration in bone parameters are more severe than after Fx and ANT. The bone response to gastric resection appeared to differ between cortical and cancellous bones. The changes observed in bone properties are probably a consequence of changes in the endocrine function of the stomach. They suggest that nesfatin-1 plays a yet unknown role in gastrectomy-, fundectomy-, and antrectomy-related bone loss, but further research is required to verify this hypothesis.

Wydawca

-

Rocznik

Tom

70

Numer

10

Opis fizyczny

p.604-609,fig,,ref.

Twórcy

autor
  • Department of Animal Physiology, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Akademicka 12, 20-950 Lublin, Poland
autor
  • Department of Animal Physiology, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Akademicka 12, 20-950 Lublin, Poland
autor
  • Department of Animal Physiology, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Akademicka 12, 20-950 Lublin, Poland
autor
  • Department of Animal Physiology, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Akademicka 12, 20-950 Lublin, Poland
autor
  • Department of Animal Physiology, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Akademicka 12, 20-950 Lublin, Poland
autor
  • Department of Animal Physiology, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Akademicka 12, 20-950 Lublin, Poland

Bibliografia

  • 1. Andersson N., Surve V. V., Lehto-Axtelius D. Andersson K., Ryberg B., Ohlsson C., Håkanson R.: Pharmacological treatment of osteopenia induced by gastrectomy or ovariectomy in young female rats. Acta Orthop. Scan. 2004, 75, 201-209.
  • 2. Andersson N., Surve V. V., Lehto-Axtelius D., Ohlsson C., Håkanson R., Andersson K., Ryberg B.: Drug induced prevention of gastrectomy- and ovariectomy-induced osteopaenia in the young female rat. J. Endocrinol. 2002, 175, 695-703.
  • 3. Baek K. H., Jeon H. M., Lee S. S., Lim D. J., Oh K. W., Lee W. Y, Rhee E. J, Han J. H., Cha B. Y., Lee K. W., Son H. Y., Kang S. K., Kang M. I.: Short-term changes in bone and mineral metabolism following gastrectomy in gastric cancer patients. Bone 2008, 42, 61-67.
  • 4. Barbour K. E., Boudreau R., Danielson M. E., Youk A. O., Wactawski-Wende J., Greep N. C., LaCroix A. Z., Jackson R. D., Wallace R. B., Bauer D. C., Allison M. A., Cauley J. A.: Inflammatory markers and the risk of hip fracture: the Women’s Health Initiative. J. Bone Miner. Res. 2012, 27, 1167-1176.
  • 5. Bisballe S., Eriksen E. F., Melsen F., Mosekilde L., Sørensen O. H., Hessov I.: Osteopenia and osteomalacia after gastrectomy: interrelations between biochemical markers of bone remodelling, vitamin D metabolites, and bone histomorphometry. Gut 1991, 32, 1303-1307.
  • 6. Bo-Linn G. W., Davis G. R., Buddru D. J., Morawski S. G., Santa Ana C., Fordtran J. S.: An evaluation of the importance of gastric acid secretion in the absorption of dietary calcium. J. Clin. Invest. 1984, 73, 640-647.
  • 7. Bollag R. J., Zhong Q., Ding K. H., Phillips P., Zhong L., Qin F., Cranford J., Mulloy A. L., Cameron R., Isales C. M.: Glucose-dependent insulinotropic peptide is an integrative hormone with osteotropic effects. Mol. Cell. Endocrinol. 2001, 177, 35-41.
  • 8. Braun T., Schett G.: Pathways for bone loss in inflammatory disease. Curr. Osteoporos. Rep. 2012, 10, 101-108.
  • 9. Coates P. S., Fernstrom J. D., Fernstrom M. H., Schauer P. R., Greenspan S. L.: Gastric bypass surgery for morbid obesity leads to an increase in bone turnover and a decrease in bone mass. J. Clin. Endocrinol. Metab. 2004, 89, 1061-106.
  • 10. Cui G. L., Syversen U., Zhao C. M., Chen D., Waldum H. L.: Long-term omeprazole treatment suppresses body weight gain and bone mineralization in young male rats. Scand. J. Gastroenterol. 2001, 36, 1011-1015.
  • 11. Davies M., Heys S. E., Selby P. L., Berry J. L., Mawer E. B.: Increased catabolism of 25-hydroxyvitamin D in patients with partial gastrectomy and elevated 1,25-dihydroxyvitamin D levels. Implications for metabolic bone disease. J. Clin. Endocrin. Metab. 1997, 82, 209-212.
  • 12. Delhanty P. J. D., Eerden van der B. C. J., van der Vede M., Gauna C., Pols A. A. P., Jahr H., Chiba H., Lely van der A. J., Leeuwen van A. J.: Ghrelin and unacelyd ghrelin stimulate human osteoblast growth via mitogen-activated protein kinase (MAPK)/ phosphoinositide 3-kinase (PI3K) pathways in the absence of GHS-R1a. J. Endocrin. 2006, 188, 37-47.
  • 13. Deng F., Ling J., Ma J., Liu C., Zhang W.: Stimulation of intramembranous bone repair in rats by ghrelin. Exp. Physiol. 2008, 93, 872-879.
  • 14. Dornonville de la Cour C., Lindqvist A., Egecioglu E., Tung Y. C. L., Surve V., Ohlsson C., Jansson J.-O., Erlanson-Albertsson C., Dickson S. L., Håkanson R.: Ghrelin treatment reverses the reduction in weight gain and body fat in gastrectomised mice. Gut. 2005, 54, 907-913.
  • 15. Fukushima N., Hanada R., Teranishi H., Fukue Y., Tachibana T., Ishikawa H., Takeda S., Takeuchi Y., Fukumoto S., Kangawa K., Nagata K., Kojima M.: Ghrelin directly regulates bone formation. J. Bone Mineral. Res. 2005, 20, 790-798.
  • 16. Gonnelli S., Caffarelli C., Del Santo K., Cadirni A., Guerriero C., Lucani B., Franci B., Nuti R.: The relationship of ghrelin and adiponectin with bone mineral density and bone turnover markers in elderly men. Calcif. Tissue Int. 2008, 83, 55-60.
  • 17. Heiskanen J. T., Kröger H., Pääkkönen M., Parviainen M. T., Lamberg-Allardt C., Alhava E.: Bone Mineral Metabolism After Total Gastrectomy. Bone 2001, 28, 13-127.
  • 18. Ilich J. Z., Kerstetter J. E.: Nutrition in bone health revisited: a story beyond calcium. J. Am. Coll. Nutr. 2000, 19, 715-737.
  • 19. Iwamoto J., Sato Y., Matsumoto H.: Influence of Gastrectomy on Cortical and Cancellous Bones in Rats. Gastroenterol. Res. Prac. 2013, Article ID 381616, http://dx.doi.org/10.1155/2013/381616
  • 20. Jiang J., Bao J., Zhou X., Xiong Y., Wu L.: Increased Serum Levels and Chondrocyte Expression of Nesfatin-1 in Patients with Osteoarthritis and Its Relation with BMI, hsCRP, and IL-18. Med. Inflam. Volume 2013, Article ID 631251, 9 pages, http://dx.doi.org/10.1155/2013/631251
  • 21. Jeon T. Y., Lee S., Kim H. H., Kim Y. J., Son H. C., Kim D. H., Sim M. S.: Changes in plasma ghrelin concentration immediately after gastrectomy in patients with early gastric cancer. J. Clin. Endocrinol. Metab. 2004, 89, 5392-5396.
  • 22. Jurimae J., Kums T., Jurimae T.: Adipocytokine and ghrelin levels in relation to bone mineral density in physically active older women: longitudinal associations. Eur. J. Endocrin. 2009, 160, 381-385.
  • 23. Kim S. W., Her S. J., Park S. J., Kim D., Park K. S., Lee H. K., Han B. H., Kim M. S., Shin Ch. S., Kim S. Y.: Ghrelin stimulates proliferation and differentiation and inhibits apoptosis in osteoblastic MC3T3-E1 cells. Bone 2005, 37, 359-369.
  • 24. Klinge B., Lehto-Axtelius D., Åkerman M., Håkanson R.: Structure of calvaria after gastrectomy. An experimental study in the rat. Scand. J. Gastroenterol. 1995, 30, 952-957.
  • 25. Larsson B., Norlen P., Lindstrom E., Zhao D., Håkanson R., Linde A.: Effects of ECL cell extracts and granule/vesicle-enriched fractions from rat oxyntic mucosa on cAMP and IP(3) in rat osteoblast-like cells. Regul. Pept. 2002, 106, 13-18.
  • 26. Lehto-Axtelius D., Chen D., Surve V. V., Håkanson R.: Post-gastrectomy osteopenia in the rat: bone structure is preserved by retaining 10%-30% of the oxyntic gland area. Scand. J Gastroenterol. 2002a, 37, 437-443.
  • 27. Lehto-Axtelius D., Stenström M., Johnell O.: Osteopenia after gastrectomy, fundectomy or antrectomy: an experimental study in the rat. Regul. Pept. 1998, 78, 41-50.
  • 28. Lehto-Axtelius D., Surve V. V., Johnell O., Håkanson R.: Effects of calcium deficiency and calcium supplementation on gastrectomy-induced osteopenia in the rat. Scand J. Gastroenterol. 2002b, 7, 299-306.
  • 29. Li R., Wu Q., Zhao Y., Jin W., Yuan X., Wu X., Tang Y., Zhang J., Tan X., Bi F., Liu J. N.: The Novel Pro-Osteogenic Activity of NUCB21–83. PLoS ONE. 2013 8(4): e61619. doi:10.1371/journal.pone.0061619
  • 30. Maccarinelli G., Sibilia V., Torsello A., Raimondo F., Pitto M., Giustina A., Netti C., Cocchi D.: Ghrelin regulates bone formation. J. Bone Min. Res. 2005, 20, 790-798.
  • 31. Makovey J., Naganathan V., Seibel M., Sambrook P.: Gender differences in plasma ghrelin and its relations to body composition and bone – an oppositesex twin study. Clin. Endocrinol. (Oxf). 2007, 66, 530-553.
  • 32. Maler G. W., Kreis M. E., Zittel T. T., Becker H. D.: Calcium regulation and bone mass loss after total gastrectomy in pigs. Ann. Surgery 1997, 225, 181-192.
  • 33. Moizé V., Andreu A., Flores L., Torres F., Ibarzabal A., Delgado S., Lacy A., Rodriguez L., Vidal J.: Long-term dietary intake and nutritional deficiencies following sleeve gastrectomy or Roux-En-Y gastric bypass in a Mediterranean population. J. Acad. Nutr. Diet. 2013, 113, 400-410.
  • 34. Napoli N., Pedone C., Pozzilli P., Lauretani F., Bandinelli S., Ferrucci L., Incalzi R. A.: Effect of ghrelin on bone mass density: the In Chianti study. Bone 2011, 49, 257-263.
  • 35. Oh K. W., Lee W. Y., Rhee E. J., Baek K. H., Yoon K. H., Kang M. I., Yun E. J., Park Ch. Y., Ihm S. H., Choi M. G., Yoo H. J., Park S. W.: The relationship between serum resistin, leptin, adiponectin, ghrelin levels and bone mineral density in middle-aged men. Clin. Endocrinol. 2005, 63, 131-138.
  • 36. Pacheco-Pantoja E. L., Ranganath L. R., Gallagher J. A., Wilson P. J. M., Fraser W. D.: Receptors and effects of gut hormones in three osteoblastic cell lines. BMC Physiol. 2011, 11, 12.
  • 37. Pech N., Meyer F., Lippert H., Manger T., Stroh C.: Complications and nutrient deficiencies two years after sleeve gastrectomy. BMC Surg. 2012, 12, article 13.
  • 38. Pech N., Meyer F., Lippert H., Manger T., Stroh C.: Complications, reoperations, and nutrient deficiencies two years after sleeve gastrectomy. J. Obesity 2012, vol. 2012, Article ID 828737.
  • 39. Persson P., Gagnemo-Persson R., Chen D., Axelson J., Nylander A. G., Johnell O., Håkanson R.: Gastrectomy causes bone loss in the rat: is lack of gastric acid responsible? Scand. J. Gastroenterol. 1993, 28, 301-306.
  • 40. Pomerants T., Tillmann V., Jurimae J., Jurimae T.: The influence of serum ghrelin, IGF axis and testosterone on bone mineral density in boys at different stages of sexual maturity. J. Bone Miner. Metab. 2007, 25, 193-197.
  • 41. Ruiz-Tovar J., Oller I., Priego P., Arroyo A., Calero A., Diez M., Zubiaga L., Calpena R.: Short- and Mid-term Changes in Bone Mineral Density After Laparoscopic Sleeve Gastrectomy. Obes. Surg. 2013, 23, 861-866.
  • 42. Sam A. H., Troke R. C., Tan T. M., Bewick G. A.: The role of the gut/brain axis in modulating food intake. Neuropharmacol. 2012, 63, 46-56.
  • 43. Schett G.: Effects of inflammatory and anti-inflammatory cytokines on the bone. Eur. J. Clin. Invest. 2011, 41, 1361-1366.
  • 44. Scotece M., Conde J., Abella V., Lo´pez V., Lago F., Pino J., Go´mez-Reino J. J., Gualillo O.: NUCB2/nesfatin-1: A New Adipokine Expressed in Human and Murine Chondrocytes with Pro-Inflammatory Properties, An In Vitro Study. Wiley Online Library (wileyonlinelibrary.com). DOI 10.1002/jor.22585
  • 45. Sun Y., Ahmed S., Smith R. G.: Deletion of ghrelin impairs neither growth nor appetite. Mol. Cell Biol. 2003, 23, 7973-7981.
  • 46. Surve V. V., Andersson N., Alatalo S., Lehto-Axtelius D., Halleen J., Väänänen K., Håkanson R.: Does combined gastrectomy and ovariectomy induce greater osteopenia in young female rats than gastrectomy alone? Calc. Tissue Int. 2001 a, 69, 274-280.
  • 47. Surve V. V., Andersson N., Lehto-Axtelius D., Håkanson R.: Comparison of osteopenia after gastrectomy, ovariectomy and prednisolone treatment in the young female rat. Acta Orthop. Scand. 2001 b, 72, 525-532.
  • 48. Velde M. van der, Delhanty P., van der Eerden B., van der Lely A. J., van Leeuwen J.: Ghrelin and bone. Vitam. Horm. 2008, 77, 239-258.
  • 49. Weiss L. A., Langenberg C., Barrett-Connor E.: Ghrelin and bone: is there an association in older adults?: the Rancho Bernardo study. J. Bone Miner. Res. 2006, 21, 752-757.
  • 50. Wojtyczka A., Bergé B., Rümenapf G., Schwille P. O., Ballanti P., Schreiber M., Fries W., Hohenberger W.: Gastrectomy osteopenia in the rat: the role of vitamin B12 deficiency and the type of reconstruction of the digestive tract. Clinical Sci. 1998, 95, 735-744.
  • 51. Xie H., Tang S., Cui R., Huang J., Ren X., Yuan L., Lu Y., Yang M., Zhou H., Wu X., Luo X., Liao E.: Apelin and its receptor are expressed in human osteoblasts. Reg. Pep. 2006, 134, 118-125.
  • 52. Zhao C.-Y., Chen J.-T., Yang D.-H., Zhong Z.-M., Bai L.: Effects of extracts of oxyntic mucosa in rat on the biological activity of osteoblasts. Osteoporos. Int. 2010, 21, 129-135.
  • 53. Zittel T. T., Zeeb B., Maier G. W., Kaiser G. W., Zwirner M., Liebich H., Starlinger M., Becker H. D.: High prevalence of bone disorders after gastrectomy. Am. J. Surg. 1997, 174, 431-438.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-42c9032a-1b41-4c2d-b766-0aaa7ba3070a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.