Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2018 | 27 | 3 |

Tytuł artykułu

Assessing flood risk dynamics on the oder river within the context of socio-economic consequences and lasting sustainable development

Warianty tytułu

Języki publikacji



We carried out a probabilistic analysis of the dynamics of flood risks for the selected area of the Oder River basin. The authors based their risk dynamics assessment on results from the distributions of the maximum values for a selected hydrological characteristic, namely flow rate. On the basis of the daily flow data from 1994-2013 collected at a hydrological station on the Oder River in the town of Malczyce, 30-day flow maxima were selected individually for four five-year periods. Then, a probabilistic model of maximal flow was estimated on the basis of these peaks for each five-year period. The resulting models were used to estimate flood risks and analyze the dynamics of the studied area.

Słowa kluczowe








Opis fizyczny



  • Department of Environmental Engineering, Wroclaw University of Technology, Sq. Grunwaldzki 9, 50-377 Wroclaw, Poland
  • Department of Quantitative Methods in Economics, Equation Chapter 1 Section 1 University of Economics in Wroclaw, Komandorska 118/120, 53-345 Wroclaw, Poland
  • IMGW-PIB Warsaw Branch, Podlesna 61, 00-001 Warsaw, Poland


  • 1. IDCZAK P. Peripheral regions development path. Globalization and regionalization in the modern world.: E. Molendowski, 168-177: Wydawnictwo Uniwersytetu Ekonomicznego w Krakowie, Kraków 2012.
  • 2. ROGALL H. The economics of sustainable development - theory and practice. Wydawnictwo Zysk i S-ka, Poznań 2010.
  • 3. SZAŁATA Ł. Model for the Lower Silesia sustainable development dialogue. Legnica: Wydawnictwo Edytor, 2015.
  • 4. KUŹMIŃSKI Ł., SZAŁATA Ł., ZWOŹDZIAK J. Application of the elements of extreme value theory to assess the dynamics of flood risk in the Odra River basin on the example of the hydrological station in Trestno. Rocznik ochrony środowiska 18 (2), 972.
  • 5. (20.06.2016)
  • 6. PRZEŹDZIECKI R. „” 29 grudzień 2015.,0,8,,mapy_ryzyka_powodziowego_minimalizuja_skutki_kleski.html (20.06.2016).
  • 7. ZWOŹDZIAK J. Contemporary trends in atmospheric air quality management. Państwowy Instytut Badawczy – IMGW, Warszawa, 2017.
  • 8. FULLER W. Floods flows.Trans. Amer. Soc. Civil Engineers 77, 564, 1914.
  • 9. BORTKIEWICZ L. Variationsbreite und mittlerer Fehler. Sitzungsber Berli. Meth. Ges. 21 (1), 3, 1922.
  • 10. GUMBEL E. The return period of flood flaws. Ann. Math. Statist. 12, 163, 1941.
  • 11. TODOROVIC P., A probabilistic approach to analysis and prediction of floods, Proc. 43rd ISI, 1979.
  • 12. GREIS N., WOOD E. Regional flood frequency estimation and network design.Water Resources Res., 1167, 1981.
  • 13. KATZ R., PARLANGE M. I NEVEAU P. Statistics of extremes in hydrology. Advances in Water Resources, 8, 2002.
  • 14. ENGELAND K., FRIGESSI A., HISDAL H. Practical Extreme Value Modelling of Hydrological Floods and Droughts: A Case Study.Extremes, 7 (1), 5, 2005.
  • 15. BORDI I., FRAEDRICH K., PETITTA M. I SUTERA A. Extreme value analysis of wet and dry periods in Sicily. Theor. Appl. Climatol. 87, 61, 2007.
  • 16. DOGAN A., HAKTANIR T., SECKIN S., YURTAL R. Comparison of propability weighted moments and maximum likehood methods used in frequency analysis for ceyhan river basin. Arabian Journal for Science & Engineering, April, 35 (1B), 49, 2010.
  • 17. HOLICKY M., SYKORA M. Assessment of Flooding Risk to Cultural Heritage in Historic Sites. Journal of perfomance of constructed facilities, 432, 2010.
  • 18. NACHABE M., PAYNTER S. Use of generalized extreme value covariates to improve estimation of trends and return frequencies for lake levels.Journal of Hydroinformatics 13 (1), 13, 2011.
  • 19. CHAIBANDIT K., KONYAI S. Using Statistics in Hydrology for Analyzing the Discharge of Yom River. APCBEE Procedia, 1, 356, 2012.
  • 20. ARNS A., WAHL T., HAIGH I., JENSENA J., PATTIARATCHI C. Estimating extreme water level probabilities: A comparison of the direct methods and recommendations for best practice. Coastal Engineering 81, 51, 2013.
  • 21. CHARON C. Probability distributions of wind speed in the UAE. Energy Conversion and Management 93, 414, 2015.
  • 22. WDOWIKOWSKI M., KAŹMIERCZAK B., LEDVINKA O., Maximum daily rainfall analysis at selected meteorological stations in the upper Lusatian Neisse River basin, Meteorol. Hydrol. Water Manage., 4 (1), 53, 2016. (The scope of this study was to assess the usefulness of top probability distributions to describe maximum rainfall data in the Lusatian Neisse River basin, based on eight IMGW- National Research Institute meteorological stations. To describe the measured data, there were used the Fréchet, Gamma, Generalized Exponential Distribution (GED), Gumbel, Log-normal and Weibull distributions.)
  • 23. KUCHAR L., IWAŃSKI S., JELONEK L., SZALIŃSKA W., 2014, Application of spatial weather generator for the assessment of climate change impacts on a river runoff, Geografie, 119 (1), 1, 2014. (3-parameter gamma distribution was found as the best fitting monthly, seasonal and annual distributions of daily runoff basing on K-S and Chi-Square tests.)
  • 24. BANASIAK R., KRZYŻANOWSKI M., Flood Flows in the Odra River in 2010 – quantative and qualitative assessment of ADCP data, Meteorol. Hydrol. Water Manage., 3 (1), 11, 2015. (The analysis is that the previously estimated flow risk and peak discharge values for the 2010 flood published previously were underestimated and the final conclusion is that the modern field data acquisition, GIS post processing, and numerical modelling, support each other and improve the final overall result, bringing hydrology products to a higher standard than they would do separately.)
  • 25. KUŹMIŃSKI Ł. Application of the extreme value theory in warning forecasting for a sequence of independent variables with a normal distribution. Application of quantitative methods in economic sciences. Zeszyty Naukowe wyższej Szkoły Bankowej we Wrocławiu 2 (34), 2013.
  • 26. KUŹMIŃSKI Ł. Limits distribution of extremes in warning forecasts of water levels. Zarządzanie i Finanse 3 (2), 147, 2013.
  • 27. KUŹMIŃSKI Ł. Distributions of extreme values in the analysis of hydrological hazard in Lower Silesia. Quantitative methods in economics. Zaszyty naukowe nr 811, 305, 2013. Wydawnictwo Naukowe Uniwersytetu Szczecińskiego.
  • 28. KUŹMIŃSKI Ł. The use of Poisson distribution to assess the risk of hydrological hazard. Mathematical and econometric methods in finance and insurance. Zeszyty Naukowe Wydziałowe 206, 7, 2013. Wydawnictwo Uniwersytetu Ekonomicznego w Katowicach.
  • 29. KUŹMIŃSKI Ł. Functions of excess and hazard as a tool in the analysis of flood risk in Lower Silesia. Quantitative methods. Zeszyty naukowe Wyższej Szkoły Bankowej we Wrocławiu 7 (45), 207, 2014. Wydawnictwo Wyższej Szkoły Bankowej w Poznaniu.
  • 30. KUŹMIŃSKI Ł. The use of Poisson distribution to assess the risk of hydrological hazard. Mathematical and econometric methods in finance and insurance. Zeszyty Naukowe Wydziałowe 206, 7, 2014.
  • 31. KUŹMIŃSKI Ł. Positional statistics in warning forecasts. Application of quantitative methods in economics and management. Red. Stefan Forlicz. Warszaw, 199, 2012.
  • 32. KUŹMIŃSKI Ł., SZAŁATA Ł., ZWOŹDZIAK J. Application of selected probability distributions of extreme values for estimating the risk of flood hazard on the Odra River in Lower Silesia. Ochrona Środowiska 38 (3), 35, 2016.
  • 33. KUŹMIŃSKI Ł., SZAŁATA Ł., ZWOŹDZIAK J. The reality of life during floods. Journal of Civil & Environmental Engineering, 6 (5), 2016.
  • 34. KUŹMIŃSKI Ł., SZAŁATA Ł., ZWOŹDZIAK J. Assessment of variability of flood risk in the Odra basin on the basis of half-yearly distribution of the maximum water levels. Prace Naukowe Uniwersytetu Ekonomicznego we Wrocławiu, 454, 102, 2016.
  • 35. YUE S., BOBE B., LEGENDRE P.I BRUNEAU P. The Gumbel mixed model for flood frequency analysis. J. Hydrol., 88, 1999.
  • 36. KUŹMIŃSKI Ł. Limit distribution of extreme values for dependent sequences of random variables. Ekonometria nr 2 (29). Wydawnictwo Uniwersytetu Ekonomicznego we Wrocławiu, 2013c.
  • 37. KOTZ S., NADARAJAH S. Extreme value distributions. Theory and Applications. London: Imperial College Press, 2005.
  • 38. BAJKIEWICZ-GRABOWSKA E., MIKULSKI Z. Hydrology, Warszawa: PWN, 2011.
  • 39. JEDYNAK P. Economic insurance. Kraków: Księgarnia Akademicka, 2001.
  • 40. YEN B. Stochastic methods and reliability analysis in water resources. Advances Water Resources, 11, 1988.
  • 41. ROGALL H. Sustainable development economics – theory and practice (in Poland), Wydawnictwo Zysk i S-ka Poznań 2010.
  • 42. ZWODŹDZIAK J. Flood risk management plans. Przegląd Komunalny. Przegląd Komunalny, 2015

Typ dokumentu



Identyfikator YADDA

JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.