PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2011 | 14 | 2 |

Tytuł artykułu

Transgenic mammalian species, generated by somatic cell cloning, in biomedicine, biopharmaceutical industry and human nutrition/dietetics - recent achievements

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Somatic cell cloning technology in mammals promotes the multiplication of productively-valuable genetically engineered individuals, and consequently allows also for standardization of transgenic farm animal-derived products, which, in the context of market requirements, will have growing significance. Gene farming is one of the most promising areas in modern biotechnology. The use of live bioreactors for the expression of human genes in the lactating mammary gland of transgenic animals seems to be the most cost-effective method for the production/processing of valuable recombinant therapeutic proteins. Among the transgenic farm livestock species used so far, cattle, goats, sheep, pigs and rabbits are useful candidates for the expression of tens to hundreds of grams of genetically- engineered proteins or xenogeneic biopreparations in the milk. At the beginning of the new millennium, a revolution in the treatment of disease is taking shape due to the emergence of new therapies based on recombinant human proteins. The ever-growing demand for such pharmaceutical or nutriceutical proteins is an important driving force for the development of safe and large-scale production platforms. The aim of this paper is to present an overall survey of the state of the art in investigations which provide the current knowledge for deciphering the possibilities of practical application of the transgenic mammalian species generated by somatic cell cloning in biomedicine, the biopharmaceutical industry, human nutrition/dietetics and agriculture.

Wydawca

-

Rocznik

Tom

14

Numer

2

Opis fizyczny

p.317-328,ref.

Twórcy

autor
  • Department of Biotechnology of Animal Reproduction, National Research Institute of Animal Production, Krakowska 1, 32-083 Balice n.Krakow, Poland
  • Department of Biotechnology of Animal Reproduction, National Research Institute of Animal Production, Krakowska 1, 32-083 Balice n.Krakow, Poland

Bibliografia

  • Aguirre A, Castro-Palomino N, De la Fuente J, Ovidio Castro FO (1998) Expression of human erythropoietin transgenes and of the endogenous WAP gene in the mammary gland of transgenic rabbits during gestation and lactation. Transgenic Res 7: 311-317.
  • Baguisi A, Behboodi E, Melican DT, Pollock JS, Destrempes MM, Cammuso C, Williams JL, Nims SD, Porter CA, Midura P, Palacios MJ, Ayres SL, Denniston RS, Hayes ML, Ziomek CA, Meade HM, Godke RA, Gavin WG, Overstrom EW, Echelard Y (1999) Production of goats by somatic cell nuclear transfer. Nat Biotechnol 17: 456-461.
  • Baranyi M, Hiripi L, Szabó L, Catunda AP, Harsányi I, Komáromy P, Bosze Z (2007) Isolation and some effects of functional, low-phenylalanine κ-casein expressed in the milk of transgenic rabbits. J Biotechnol 128: 383-392.
  • Boaglio A, Bassani G, Picó G, Nerli B (2006) Features of the milk whey protein partitioning in polyethyleneglycol-sodium citrate aqueous two-phase systems with the goal of isolating human α-1-antitrypsin expressed in bovine milk. J Chromatogr B Analyt Technol Biomed Life Sci 837: 18-23.
  • Bondioli K, Ramsoondar J, Williams B, Costa C, Fodor W (2001) Cloned pigs generated from cultured skin fibroblasts derived from a H-transferase transgenic boar. Mol Reprod Dev 60: 189-195.
  • Bösze Z, Baranyi M, Whitelaw CB (2008) Producing recombinant human milk proteins in the milk of livestock species. Adv Exp Med Biol 606: 357-393.
  • Brink MF, Bishop MD, Pieper FR (2000) Developing efficient strategies for the generation of transgenic cattle which produce biopharmaceuticals in milk. Theriogenology 53: 139-148.
  • Brophy B, Smolenski G, Wheeler T, Wells D, L’Huillier P, Laible G (2003) Cloned transgenic cattle produce milk with higher levels of β-casein and κ-casein. Nat Biotechnol 21: 157-162.
  • Cammuso C, Porter C, Nims S, Gaucher D, Melican D, Bombard S, Hawkins N, O’Coin A, Ricci C, Brayman C, Buzzell N, Ziomek C, Gavin W (2000) Hormonal induced lactation in transgenic goats. Anim Biotechnol 11: 1-17.
  • Chen CM, Wang CH, Wu SC, Lin CC, Lin SH, Cheng WT (2002a) Temporal and spatial expression of biologically active human factor VIII in the milk of transgenic mice driven by mammary-specific bovine α-lactalbumin regulation sequences. Transgenic Res 11: 257-268.
  • Chen SH, Vaught TD, Monahan JA, Boone J, Emslie E, Jobst PM, Lamborn AE, Schnieke A, Robertson L, Colman A, Dai Y, Polejaeva IA, Ayares DL (2002b) Efficient production of transgenic cloned calves using preimplantation screening. Biol Reprod 67: 1488-1492.
  • Cheng Y, Wang YG, Luo JP, Shen Y, Yang YF, Ju HM, Zou XG, Xu SF, Lao WD, Du M (2002) Cloned goats produced from the somatic cells of an adult transgenic goat. Sheng Wu Gong Cheng Xue Bao, Chinese Journal of Biotechnology 18: 79-83.
  • Choi BK, Bleck GT, Jimenez-Flores R (2000) Cation-exchange purification of mutagenized bovine β-casein expressed in transgenic mouse milk: its putative Asn68-linked glycan is heterogeneous. J Dairy Sci 84: 44-49.
  • Chrenek P, Ryban L, Vetr H, Makarevich AV, Uhrin P, Paleyanda RK, Binder BR (2007) Expression of recombinant human factor VIII in milk of several generations of transgenic rabbits. Transgenic Res 16: 353-361.
  • Clark AJ (1998) The mammary gland as a bioreactor: expression, processing, and production of recombinant proteins. J Mammary Gland Biol Neoplasia 3: 337-350.
  • Devinoy E, Thépot D, Stinnakre MG, Fontaine ML, Grabowski H, Puissant C, Pavirani A, Houdebine LM (1994) High level production of human growth hormone in the milk of transgenic mice: the upstream region of the rabbit whey acidic protein (WAP) gene targets transgene expression to the mammary gland. Transgenic Res 3: 79-89.
  • Echelard Y, Meade H, Ziomek C (2005) The first biopharmaceutical from transgenic animals: AtrynR. Modern Biopharmaceuticals 4 (11): 995-1016.
  • Echelard Y, Ziomek CA, Meade HM (2006) Production of recombinant therapeutic proteins in the milk of transgenic animals. BioPharm International 19: 36-46.
  • Gil GC, Velander WH, Van Cott KE (2008) Analysis of the N-glycans of recombinant human Factor IX purified from transgenic pig milk. Glycobiology 18: 526-539.
  • Hitchin E, Stevenson EM, Clark AJ, McClenaghan M, Leaver J (1996) Bovine beta-casein expressed in transgenic mouse milk is phosphorylated and incorporated into micelles. Protein Expr Purif 7: 247-252.
  • Hyvonen P, Suojala L, Haaranen J, von Wright A, Pyörälä S (2006) Human and bovine lactoferrins in the milk of recombinant human lactoferrin-transgenic dairy cows during lactation. Biotechnol J 1: 410-412.
  • Jang G, Bhuiyan MM, Jeon HY, Ko KH, Park HJ, Kim MK, Kim JJ, Kang SK, Lee BC, Hwang WS (2006) An approach for producing transgenic cloned cows by nuclear transfer of cells transfected with human α1-antitrypsin gene. Theriogenology 65: 1800-1812.
  • Jenkins TC, McGuire MA (2006) Major advances in nutrition: impact on milk composition. J Dairy Sci 89: 1302--1310.
  • Kind A, Schnieke A (2008) Animal pharming, two decades on. Transgenic Res 17: 1025-1033.
  • Konkle BA, Bauer KA, Weinstein R, Greist A, Holmes HE, Bonfiglio J (2003) Use of recombinant human antithrombin in patients with congenital antithrombin deficiency undergoing surgical procedures. Transfusion 43: 390-394.
  • Laible G, Brophy B, Knighton D, Wells DN (2007) Compositional analysis of dairy products derived from clones and cloned transgenic cattle. Theriogenology 67: 166-177.
  • Lee CS, Kim K, Yu DY, Lee KK (1996) An efficient expression of human growth hormone (hGH) in the milk of transgenic mice using rat β-casein/hGH fusion genes. Appl Biochem Biotechnol 56: 211-222.
  • Lee JW, Wu SC, Tian XC, Barber M, Hoagland T, Riesen J, Lee KH, Tu CF, Cheng WT, Yang X (2003) Production of cloned pigs by whole-cell intracytoplasmic microinjection. Biol Reprod 69: 995-1001.
  • Limonta JM, Castro FO, Martínez R, Puentes P, Ramos B, Aguilar A, Lleonart RL, de la Fuente J (1995) Transgenic rabbits as bioreactors for the production of human growth hormone. J Biotechnol 40: 49-58.
  • McCreath KJ, Howcroft J, Campbell KH, Colman A, Schnieke AE, Kind AJ (2000) Production of gene-targeted sheep by nuclear transfer from cultured somatic cells. Nature 405: 1066-1069.
  • Melican D, Butler R, Hawkins N, Chen LH, Hayden E, Destrempes M, Williams J, Lewis T, Behboodi E, Ziomek C, Meade H, Echelard Y, Gavin W (2005) Effect of serum concentration, method of trypsinization and fusion/activation utilizing transfected fetal cells to generate transgenic dairy goats by somatic cell nuclear transfer. Theriogenology 63: 1549-1563.
  • Melo EO, Canavessi AM, Franco MM, Rumpf R (2007) Animal transgenesis: state of the art and applications. J Appl Genet 48: 47-61.
  • Mikus T, Poplstein M, Sedláková J, Landa V, Jeníková G, Trefil P, Lidický J, Malý P (2004) Generation and phenotypic analysis of a transgenic line of rabbits secreting active recombinant human erythropoietin in the milk. Transgenic Res 13: 487-498.
  • Nagasawa H, Kataoka T, Tojo H (1996) Changes of plasma levels of human growth hormone with age in relation to mammary tumour appearance in whey acidic protein/human growth hormone (mWAP/hGH) transgenic female and male mice. In Vivo 10: 503-505.
  • Niemann H, Kues WA (2007) Transgenic farm animals: an update. Reprod Fertil Dev 19: 762-770.
  • Paleyanda RK, Velander WH, Lee TK, Scandella DH, Gwazdauskas FC, Knight JW, Hoyer LW, Drohan WN, Lubon H (1997) Transgenic pigs produce functional human factor VIII in milk. Nat Biotechnol 15: 971-975.
  • Pampel L, Boushaba R, Udell M, Turner M, Titchener-Hooker N (2007) The influence of major components on the direct chromatographic recovery of a protein from transgenic milk. J Chromatogr A 1142: 137-147.
  • Pampel LW, Boushaba R, Titchener-Hooker NJ (2008) A methodical approach to ultra-scale-down of process sequences: application to casein removal from the milk of transgenic animals. Biotechnol Prog 24: 192-201.
  • Patnaik MM, Moll S (2008) Inherited antithrombin deficiency: a review. Haemophilia 14: 1229-1239.
  • Pipe SW (2005) The promise and challenges of bioengineered recombinant clotting factors. J Thromb Haemost 3: 1692-1701.
  • Ramsoondar JJ, Machaty Z, Costa C, Williams BL, Fodor WL, Bondioli KR (2003) Production of α1,3-galactosyltransferase-knockout cloned pigs expressing human α1,2-fucosylosyltransferase. Biol Reprod 69: 437-445.
  • Reggio BC, James AN, Green HL, Gavin WG, Behboodi E, Echelard Y, Godke RA (2001) Cloned transgenic offspring resulting from somatic cell nuclear transfer in the goat: oocytes derived from both follicle-stimulating hormone-stimulated and nonstimulated abattoir-derived ovaries. Biol Reprod 65: 1528-1533.
  • Rijnkels M, Kooiman PM, Platenburg GJ, van Dixhoorn M, Nuijens JH, de Boer HA, Pieper FR (1998) High-level expression of bovine αS1-casein in milk of transgenic mice. Transgenic Res 7: 5-14.
  • Sabikhi L (2007) Designer milk. Adv Food Nutr Res 53: 161-198.
  • Salamone D, Barañao L, Santos C, Bussmann L, Artuso J, Werning C, Prync A, Carbonetto C, Dabsys S, Munar C, Salaberry R, Berra G, Berra I, Fernández N, Papouchado M, Foti M, Judewicz N, Mujica I, Muñoz L, Alvarez SF, González E, Zimmermann J, Criscuolo M, Melo C (2006) High level expression of bioactive recombinant human growth hormone in the milk of a cloned transgenic cow. J Biotechnol 124: 469-472.
  • Samiec M, Skrzyszowska M, Smorąg Z (2003) Effect of activation treatments on the in vitro developmental potential of porcine nuclear transfer embryos. Czech J Anim Sci 48: 499-507.
  • Samiec M (2005a) The role of mitochondrial genome (mtDNA) in somatic and embryo cloning of mammals. J Anim Feed Sci 14: 213-233.
  • Samiec M (2005b) The effect of mitochondrial genome on architectural remodeling and epigenetic reprogramming of donor cell nuclei in mammalian nuclear transfer-derived embryos. J Anim Feed Sci 14: 393-422.
  • Samiec M, Skrzyszowska M (2005) Molecular conditions of the cell nucleus remodelling/reprogramming process and nuclear-transferred embryo development in the intraooplasmic karyoplast injection technique. Czech J Anim Sci 50: 185-195.
  • Schnieke AE, Kind AJ, Ritchie WA, Mycock K, Scott AR, Ritchie M, Wilmut I, Colman A, Campbell KH (1997) Human factor IX transgenic sheep produced by transfer of nuclei from transfected fetal fibroblasts. Science 278: 2130-2133.
  • Skrzyszowska M, Smorąg Z, Słomski R, Kątska-Książkiewicz L, Kalak R, Michalak E, Wielgus K, Lehmann J, Lipiński D, Szalata M, Pławski A, Samiec M, Jura J, Gajda B, Ryńska B, Pieńkowski M (2006) Generation of transgenic rabbits by the novel technique of chimeric somatic cell cloning. Biol Reprod 74: 1114-1120.
  • Skrzyszowska M, Samiec M, Słomski R, Lipiński D, Mały E (2008) Development of porcine transgenic nuclear-transferred embryos derived from fibroblast cells transfected by the novel technique of nucleofection or standard lipofection. Theriogenology 70: 248-259.
  • Thomson AJ, Marques MM, McWhir J (2003) Gene targeting in livestock. Reprod Suppl 61: 495-508.
  • Van Cott KE, Monahan PE, Nichols TC, Velander WH (2004) Haemophilic factors produced by transgenic livestock: abundance that can enable alternative therapies worldwide. Haemophilia 10 Suppl 4: 70-76.
  • Wang B, Zhou J (2003) Specific genetic modifications of domestic animals by gene targeting and animal cloning. Reprod Biol Endocrinol 1, published online, doi: 10.1186/1477-7827-1-103: 103-110.
  • Wrathall AE (2000) Risk of transmission of spongiform encephalopathies by reproductive technologies in domesticated ruminants. Livest Prod Sci 62: 287-316.
  • Yan JB, Wang S, Huang WY, Xiao YP, Ren ZR, Huang SZ, Zeng YT (2006) Transgenic mice can express mutant human coagulation factor IX with higher level of clotting activity. Biochem Genet 44: 349-360.
  • Yu Z, Meng Q, Yu H, Fan B, Yu S, Fei J, Wang L, Dai Y, Li N (2006) Expression and bioactivity of recombinant human lysozyme in the milk of transgenic mice. J Dairy Sci 89: 2911-2918.
  • Zhou Q, Kyazike J, Echelard Y, Meade HM, Higgins E, Cole ES, Edmunds T (2005) Effect of genetic background on glycosylation heterogeneity in human antithrombin produced in the mammary gland of transgenic goats. J Biotechnol 117: 57-72.
  • Zuelke KA (1998) Transgenic modification of cows milk for value-added processing. Reprod Fertil Dev 10: 671-676.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-4273a218-ce88-4289-bbb3-2f04fba7091d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.