PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2009 | 31 | 1 |

Tytuł artykułu

Phenols, proline and low-molecular thiol levels in pea (Pisum sativum) plants respond differently toward prolonged exposure to ultraviolet-B and ultraviolet-C radiations

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Pea (Pisum sativum L.) seedlings were exposed to low, moderate, and high regimes of ultraviolet-B (UVB) (ld-B 4.4, md-B 13.3, and hd-B 26.5 kJ m⁻² day⁻¹), or ultraviolet-C (UV-C) (ld-C 0.1, md-C 0.3, and hd-C 0.6 kJ m⁻² day⁻¹) radiations. Concentrations of total phenols, free proline, and low-molecular thiol groups were determined in the last formed (young) and older leaves after irradiation for 7, 10 or 14 consecutive days. Shoot length and weight did not change markedly after 14 days of ld-B and ld-C, but reduced substantially after moderate and high regimes of both UV-B and UV-C. Proline decreased upon high doses of irradiation, while in ld-B treated plants, by contrast, an increase was observed. The reduction in total phenols and thiols was stronger after hd-B than after hd-C irradiations, although an induction was found in ld-B treated plants. In contrast to ld-B, ld-C regime led mainly to reductions or insignificant changes in proline, phenols, and thiols. Therefore, the stress-protection mechanisms are different between low UV-B and UV-C irradiation regimes in regard to proline, phenols, and thiols.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

31

Numer

1

Opis fizyczny

p.111-117,fig.,ref.

Twórcy

autor
  • Acad. M. Popov Institute of Plant Physiology, BAS, Acad. G. Bonchev Str., Bl. 21, 1113 Sofia, Bulgaria
autor
  • Centre of Food Biology, PO Box 120, 1592 Sofia, Bulgaria
autor
  • Institute of Agricultural Biology and Biotechnology, CNR, Via Bassini 15, 20133 Milan, Italy
autor
  • Acad. M. Popov Institute of Plant Physiology, BAS, Acad. G. Bonchev Str., Bl. 21, 1113 Sofia, Bulgaria

Bibliografia

  • Alexieva V, Sergiev I, Mapelli S, Karanov E (2001) The effect of drought and ultraviolet radiation on growth and stress markers in pea and wheat. Plant Cell Environ 24:1337–1344. doi: 10.1046/j.1365-3040.2001.00778.x
  • Ballaré CO, Rousseaux MC, Searles PS, Zaller JG, Giordano CV, Robson TM et al (2001) Impacts of solar ultraviolet-B radiation on terrestrial ecosystems of Tierra del Fuego (southern Argentina). An overview of recent progress. J Photochem Photobiol B Biol 61:67–77. doi:10.1016/S1011-1344(01)00152-X
  • Bassman JH (2004) Ecosystem consequences of enhanced solar ultraviolet radiation: secondary plant metabolites as mediators of multiple trophic interactions in terrestrial plant communities. Photochem Photobiol 79:382–398. doi:10.1562/SI-03-24.1
  • Bates LS, Waldren RP, Tearee ID (1973) Rapid determination of free proline for water-stress studies. Plant Soil 39:205–207. doi: 10.1007/BF00018060
  • Blokhina O, Virolainen E, Fagerstedt KV (2003) Antioxidants, oxidative damage and oxygen deprivation stress. Ann Bot (Lond) 91:179–194. doi:10.1093/aob/mcf118
  • Bornman JF, Evert RF, Mierzwa RJ (1983) The effect of UV-B and UV-C radiation on sugar beet leaves. Protoplasma 117:7–16. doi: 10.1007/BF01281779
  • Caldwell MM (1971) Solar ultraviolet radiation and the growth and development of higher plants. In: Giese AC (ed) Photophysiology, vol 6. Academic Press, New York, pp 131–171
  • Caldwell MM, Bornman JF, Ballaré CL, Flint SD, Kulandaivelu G (2007) Terrestrial ecosystems, increased solar ultraviolet radiation, and interactions with other climate change factors. Photochem Photobiol Sci 6:252–266. doi:10.1039/b700019g
  • Casati P, Andreo CS (2001) UV-B and UV-C induction of NADPmalic enzyme in tissues of different cultivars of Phaseolus vulgaris (bean). Plant Cell Physiol 24:621–630
  • Córdoba C, Muňos JA, Cachorro V, de Cárcer IA, Cussó F, Jaque F (1997) The detection of solar ultraviolet-C radiation using KCl:Eu²⁺ thermoluminiscence dosimeters. J Phys D Appl Phys 30:3024–3027. doi:10.1088/0022-3727/30/21/017
  • Demir Y (2000) Growth and proline content of germinating wheat genotypes under ultraviolet light. Turk J Bot 24:67–70
  • Duval B, Shetty K, Thomas WH (2000) Phenolic compounds and antioxidant properties in the snow alga Chlamydomonas nivalis after exposure to UV light. J Appl Phycol 11:559–566. doi: 10.1023/A:1008178208949
  • Edreva A (2005) The importance of non-photosynthetic pigments and cinnamic acid derivates in photoprotection. Agric Ecosyst Environ 106:135–146. doi:10.1016/j.agee.2004.10.002
  • Fedina I, Georgieva K, Velitchkova M, Grigorova I (2006) Effect of pre-treatment of barley seedlings with different salts on the level of UV-B induced and UV-B absorbing compounds. Environ Exp Bot 56:225–230. doi:10.1016/j.envexpbot.2005.02.006
  • Foyer C, Noctor G (2005) Oxidant and antioxidant signalling in plants; a re-evalution of the concept of oxidative stress in a physiological context. Plant Cell Environ 28:1056–1071. doi: 10.1111/j.1365-3040.2005.01327.x
  • Frohnmeyer H, Staiger D (2003) Ultraviolet-B radiation-mediated responses in plants, balancing damage and protection. Plant Physiol 133:1420–1428. doi:10.1104/pp.103.030049
  • Grill D, Pfeifhofer H, Tschulik A, Hellig K, Holzer K (1988) Thiol content of spruce needles at forest limits. Oecologia 76:294–297. doi:10.1007/BF00379966
  • Häder D-P, Kumar HD, Smith RC, Worrest RC (2007) Effects of solar UV radiation on aquatic ecosystems and interactions with climate change. Photochem Photobiol Sci 6:267–285. doi: 10.1039/b700020k
  • Hanson AD, Nelson CE, Eversen EH (1977) Evolution of free proline accumulation as an index of drought resistance using two contrasting barley cultivars. Crop Sci 17:720–726
  • Ivanov SV, Kerchev PI (2007) Separation and quantification of the cellular thiol pool of pea plants treated with heat, salinity and atrazine. Phytochem Anal 18:283–290. doi:10.1002/pca.980
  • Kinnunen H, Huttunen S, Laakso K (2001) UV absorbing compounds and waxes of Scots pine needles during a third growing season of supplemental UV-B. Environ Pollut 112:215–220. doi: 10.1016/S0269-7491(00)00113-5
  • Kliebenstein DJ (2004) Secondary metabolites and plant/environment interactions: a view through Arabidopsis thaliana tinged glasses. Plant Cell Environ 27:675–684. doi:10.1111/j.1365-3040. 2004.01180.x
  • Lesniewska E, Adrian M, Klinguer A, Pugin A (2004) Cell wall modification in grapevine cells in response to UV stress investigated by atomic force microscopy. Ultramicroscopy 100:171–178. doi:10.1016/j.ultramic.2003.11.004
  • Liu L, McClure JW (1995) Effects of UV-B on activities of enzymes of secondary phenolic metabolism in barley primary leaves. Physiol Plant 93:734–739. doi:10.1111/j.1399-3054.1995. tb05124.x
  • Parvanova D, Ivanov S, Konstantinova T, Karanov E, Atanassov A, Tsvetkov T et al (2004) Transgenic tobacco plants accumulating osmolytes show reduced oxidative damage under freezing stress. Plant Physiol Biochem 42:57–63. doi:10.1016/j.plaphy.2003. 10.007
  • Paul N (2001) Plant responses to UV-B: time to look beyond stratospheric ozone depletion? New Phytol 150:5–8. doi: 10.1046/j.1469-8137.2001.00090.x
  • Procházková D, Wilhelmova N (2007) The capacity of antioxidant protection during modulated ageing of bean (Phaseolus vulgaris L.) cotyledon. 1. The antioxidant enzyme activities. Cell Biochem Funct 25:87–95. doi:10.1002/cbf.1271
  • Rijstenbil JW (2005) UV- and salinity-induced oxidative effects in the marine diatom Cylindrotheca closterium during simulated emersion. Mar Biol (Berl) 147:1063–1073. doi:10.1007/s00227-005-0015-4
  • Saradhi P, Alia P, Arora S, Prasad KV (1995) Proline accumulates in plants exposed to UV radiation and protects them against UV induced peroxidation. Biochem Biophys Res Commun 209:1–5. doi:10.1006/bbrc.1995.1461
  • Shama G, Alderson P (2005) UV hormesis in fruits: a concept ripe for commercialisation. Trends Food Sci Technol 16:128–136. doi: 10.1016/j.tifs.2004.10.001
  • Shiu C-T, Lee T-M (2005) Ultraviolet-B-induced oxidative stress and responses of the ascorbate–glutathione cycle in a marine macroalga Ulva fasciata. J Exp Bot 56:2851–2865. doi: 10.1093/jxb/eri277
  • Stapleton AE (1992) Ultraviolet radiation and plants: burning questions. Plant Cell 4:1353–1358
  • Swain T, Goldstein JL (1964) The quantitative analysis of phenolic compounds. In: Pridham JB (ed) Methods in polyphenol chemistry. Pergamon Press, Oxford, pp 131–146
  • Tausz M, Ircelj H, Grill D (2004) The glutathione system as a stress marker in plant ecophysiology: is a stress-response concept valid? J Exp Bot 55:1955–1962. doi:10.1093/jxb/erh194
  • Tegelberg R, Julkunen-Tiitto R, Aphalo DJ (2001) The effects of long term elevated UV-B on growth and phenolics of the field-grown silver birch (Betula pendula). Glob Change Biol 7:839–848. doi: 10.1046/j.1354-1013.2001.00453.x

Uwagi

Rekord w opracowaniu

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-42576531-d920-4b81-8e2a-68bd6314224c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.