Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2013 | 58 | 2 |
Tytuł artykułu

Worldwide distribution of the modiomorphid bivalve genus Caspiconcha in late Mesozoic hydrocarbon seeps

Treść / Zawartość
Warianty tytułu
Języki publikacji
Exceptionally well preserved specimens of the bivalve mollusc Modiola major were collected from a Lower Cretaceous (Barremian) hydrocarbon seep deposit in northern California. This material, together with the type series of M. major, and various other specimens from Upper Jurassic to Lower Cretaceous seep localities in California, is redescribed and referred to the hydrocarbon seep−restricted modiomorphid genus Caspiconcha. We include also a description of Myoconcha americana because some previous reports have incorrectly synonymized Myoconcha americana with Caspiconcha major. In addition, we report Caspiconcha sp. from a Lower Cretaceous (Albian) hydrocarbon seep from Hokkaido, Japan, and we review all currently described species of Caspiconcha, and other species that probably belong to this genus. We demonstrate that Caspiconcha had a widespread distribution in Late Jurassic to Early Cretaceous hydrocarbon seeps, but became rare thereafter, with the last representative occurring in Upper Cretaceous strata of Japan. This macroevolutionary pattern is similar to that observed in the seep−restricted brachiopods. After the decline of Caspiconcha at the end of the Early Cretaceous and its last occurrence in the Campanian, the ecological niche of epifaunal to semi−infaunal seep endemic bivalves was largely vacant and not reoccupied until the Eocene with the appearance of the vesicomyid and bathymodiolin bivalves. The formal placement of M. major into the genus Caspiconcha restricts the fossil record of mytilids at seeps to post−Mesozoic times, and thus there is less discrepancy between the fossil record of chemosynthetic mytilids and their divergence age estimates from molecular data.
Opis fizyczny
  • School of Natural System, College of Science and Engineering, Kanazawa University, 920-1192, Japan
  • Institute of Paleobiology, Polish Academy of Sciences, Twarda 51/55, 00-818 Warsaw, Poland
  • School of Earth and Environment, University of Leeds, Leeds LS2 9JT, U.K.
  • Department of Natural History Sciences, Hokkaido University, Sapporo 060-0810, Japan
  • University Museum, University of Tokyo, Tokyo 113-0033, Japan
  • School of Environment, The University of Auckland, Auckland 1142, New Zealand
  • Agirrezabala, L.M., Kiel, S., Blumenberg, M., Schäfer, and N., Reitner, J. (in press). Outcrop analogues of pockmarks and associated methaneseep carbonates: A case study from the Lower Cretaceous (Albian) of the Basque−Cantabrian Basin, western Pyrenees. Palaeogeography, Palaeoclimatology, Palaeoecology.
  • Amano, K. and Jenkins, R. 2007. Eocene drill holes in cold−seep bivalves of Hokkaido, northern Japan. Marine Ecology—an Evolutionary Perspective 28: 108–114.
  • Amano, K. and Kiel, S. 2007. Fossil vesicomyid bivalves from the North Pacific region. Veliger 49: 270–293.
  • Amano, K., Jenkins, R.G., and Hikida, Y. 2007. A new gigantic Nucinella (Bivalvia: Solemyoida) from the Cretaceous cold−seep deposit in Hokkaido, northern Japan. Veliger 49: 84–90.
  • Anderson, F.M. 1902. Cretaceous deposits of the Pacific coast. Proceedings of the California Academy of Sciences, Third Series 2 (1): 3–155.
  • Ascher, E. 1906. Die Gastropoden, Bivalven und Brachiopoden der Grodischter Schichten. Beiträge zur Paläontologie und Geologie Österreich-Ungarns und des Orients 19: 135–167.
  • Bailey, J.B. 1983. Middle Devonian Bivalvia from the Solsville Member (Marcellus Formation), central New York State. Bulletin of the American Museum of Natural History 174: 196–325.
  • Bouchet, P. and von Cosel, R. 2004. The world's largest lucinid is an undescribed species from Taiwan (Mollusca: Bivalvia). Zoological Studies 43: 704–711.
  • Bouchet, P., Rocroi, J.P., Bieler, R., Carter, J.G., and Coan, E.V. 2010. Nomenclator of bivalve families with a classification of bivalve families. Malacologia 52: 4–172.
  • Boss, K.J. and Turner, R.D. 1980. The giant white clam from the Galapagos Rift,Calyptogena magnifica species novum. Malacologia 20: 161–194.
  • Bromley, R. and D'Alessandro, A. 1987. Bioerosion of the Plio−Pleistocene transgression of southern Italy. Rivista Italiana di Paleontologia e Stratigrafia 93: 379–442.
  • Campbell, K.A. 2006. Hydrocarbon seep and hydrothermal vent paleoenvironments and paleontology: Past developments and future research directions. Palaeogeography Palaeoclimatology Palaeoecology 232: 362–407.
  • Campbell, K.A. and Bottjer, D.J. 1993. Fossil cold seeps. National Geographic Research & Exploration 9: 326–343.
  • Campbell, K.A. and Bottjer, D.J. 1995a. Brachiopods and chemosymbiotic bivalves in Phanerozoic hydrothermal vent and cold seep environments. Geology 23: 321–324.
  • Campbell, K.A. and Bottjer, D.J. 1995b. Peregrinella: an Early Cretaceous cold−seep−restricted brachiopod. Paleobiology 21: 461–478.
  • Campbell, K.A., Carlson, C., and Bottjer, D.J. 1993. Fossil cold seep limestone and associated chemosynthetic macroinvertebrate faunas, Jurassic–Cretaceous Great Valley Group, California. In: S.A. Graham, and D.R. Lowe (eds.), Advances in the Sedimentary Geology of the Great Valley Group, Sacramento Valley, California, 37–50. Society of Economic Paleontologists and Mineralogists, Pacific Section, Los Angeles.
  • Campbell, K.A., Farmer, J.D., and Des Marais, D. 2002. Ancient hydrocarbon seeps from the Mesozoic convergent margin of California: carbonate geochemistry, fluids and palaeoenvironments. Geofluids 2: 63–94.
  • Campbell, K.A., Peterson, D.E., and Alfaro, A.C. 2008. Two new species of Retiskenea? (Gastropoda: Neomphalidae) from Lower Cretaceous hydrocarbon−seep carbonates of northern California. Journal of Paleontology 82: 140–153.
  • Carter, J.G. 1990. Evolutionary significance of shell microstructure in the Palaeotaxodonta, Pteriomorphia and Isofilibranchia (Bivalvia: Mollusca). In: J.G. Carter (ed.), Skeletal Biomineralization: Patterns, Processes and Evolutionary Trends,135–296. Van Nostrand Reinhold, New York.
  • Carter, J.G., Campbell, D.C., and Campbell, M.R. 2000. Cladistic perspectives on early bivalve evolution. Geological Society, London, Special Publications 177: 47–79.
  • Chavan, A. 1954. Les Pleurophorus et genres voisins. Cahiers Géologiques Seyssel 22: 200.
  • Chavan, A. 1969. Family Mactromyidae, Superfamily Carditacea. Part N, Mollusca 6. In: R.C. Moore (ed.), Treatise on Invertebrate Paleontology, N511–513, N543–548. Geological Society of America and University of Kansas Press, Lawrence.
  • Cooper, J.G. 1897. List of fossils.In: M.E. Watts (ed.), Oil and Gas Yielding Formations of Los Angeles, Ventura, and Santa Barbara Counties.California. State Mining Bureau. Bulletin 11: 79–87.
  • Crandall, R. 1907. The Cretaceous stratigraphy of the Santa Clara Valley region in California.American Journal of Science, Fourth Series 24: 33–54.
  • Damborenea, S.E. 2004. Early Jurassic Kalentera (Bivalvia) from Argentina and its palaeobiogeographical significance. Ameghiniana 41: 185–198.
  • Dean, H.K. 1992. A new arabellid polychaete living in the mantle cavity of deep−sea boring bivalves (Family Pholadidae). Proceedings of the Biological Society of Washington 105: 224–232.
  • Dickerson, R.E. 1914. Fauna of Martinez Eocene of California. University of California Publications, Bulletin of the Department of Geology 8 (6): 61–180.
  • Diller, J.S. and Stanton, T.W. 1894. The Shasta−Chico series. Bulletin of the Geological Society of America 5: 435–464.
  • Dufour, S.C. 2005. Gill anatomy and the evolution of symbiosis in the bivalve family Thyasiridae. Biological Bulletin 208: 200–212.
  • Durham, D.L. 1998. California's Geographic Names: A Gazetteer of Historic and Modern Names of the State. 1658 pp. Word Dancer Press, California.
  • Fang, Z.−J. and Morris, N.J. 1997. The genus Pseudosanguinolites and some modioliform bivalves (mainly Paleozoic). Palaeoworld 7: 49–74.
  • Fernando, A.G.S., Nishi, H., Tanabe, K., Moriya, K., Iba, Y., Kodama, K., Murphy, M.A., and Okada, H. 2011. Calcareous nannofossil biostratigraphic study of forearc basin sediments: the Lower to Upper Cretaceous Budden Canyon Formation (Great Valley Sequence), northern California. Island Arc 20: 346–370.
  • Futakami, M. 1982. Cretaceous stratigraphy and ammonite assemblages of the Hatonosu area, central Hokkaido. Journal of Geological Society of Japan 88: 101–120.
  • Gabb, W. 1869. Cretaceous Fossils. Palaeontology of California 2 (section 2, part 1): 125–205.
  • Goedert, J.L., Thiel, V., Schmale, O., Rau, W.W., Michaelis, W., and Peckmann, J. 2003. The Late Eocene "Whiskey Creek" methane−seep deposit (Western Washington State) Part I: Geology, Palaeontology, and Molecular Geobiology. Facies 48: 223–240.
  • Grabau, A. and Shimer, H. 1909. North American Index Fossils, Invertebrates. 853 pp. A.G. Seiler and Company, New York.
  • Griffin, M. and Pastorino, G. 2006. Madrynomya brunerin gen. and sp. (Bivalvia: ?Modiomorphidae): A Mesozoic survivor in the Tertiary of Patagonia? Journal of Paleontology 80: 272–282.
  • Hammer, Ø., Nakrem, H.A., Little, C.T.S., Hryniewicz, K., Sandy, M.R., Hurum, J.R., Druckenmiller, P., Knutsen, E.M., and Høyberget, M. 2011. Hydrocarbon seeps from close to the Jurassic–Cretaceous boundary, Svalbard. Palaeogeography, Palaeoclimatology, Palaeoecology 306: 15–26.
  • Hikida, Y., Suzuki, S., Togo, Y., and Ijiri, A. 2003. An exceptionally well−preserved fossil seep community from the Cretaceous Yezo Group in the Nakagawa area, Hokkaido. Paleontological Research 7: 329–342.
  • Jenkins, R.G., Kaim, A., and Hikida, Y. 2007a. Antiquity of substrate choice among acmaeid limpets from the Late Cretaceous chemosynthesisbased communities. Acta Palaeontologica Polonica 52: 369–373.
  • Jenkins, R.G., Kaim, A., Hikida, Y., and Tanabe, K. 2007b. Methane−fluxdependent lateral faunal changes in a Late Cretaceous chemosymbiotic assemblage from the Nakagawa area of Hokkaido, Japan. Geobiology 5: 127–139.
  • Jenkins, R.G., Hikida, Y., Chikaraishi, Y., Ohkouchi, N., and Tanabe, K. 2008. Microbially induced formation of ooid−like coated grains in the Late Cretaceous methane−seep deposits of the Nakagawa area, Hokkaido, northern Japan. Island Arc 17: 261–269.
  • Jones, D.L. and Bailey, E.H. 1973. Preliminary biostratigraphic map, Colyear Springs quadrangle, California. U.S. Geological Survey Miscellaneous Field Studies Map 517.
  • Kaim, A. 2011. Non−actualistic wood−fall associations from Middle Jurassic of Poland. Lethaia 34: 109–124.
  • Kaim, A. and Schneider, S. 2012. A conch with a collar: Early ontogeny of the enigmatic fossil bivalve Myoconcha. Journal of Paleontology 86: 652–658.
  • Kaim, A., Jenkins, R.G., and Warén, A. 2008a. Provannid and provannidlike gastropods from the Late Cretaceous cold seeps of Hokkaido (Japan) and the fossil record of the Provannidae (Gastropoda: Abyssochrysoidea). Zoological Journal of the Linnean Society 154: 421–436.
  • Kaim, A., Kobayashi, Y., Echizenya, H., Jenkins, R.G., and Tanabe, K. 2008b. Chemosynthesis−based associations on Cretaceous plesiosaurid carcasses. Acta Palaeontologica Polonica 53: 97–104.
  • Kaim, A., Jenkins, R.G., and Hikida, Y. 2009. Gastropods from Late Cretaceous Omagari and Yasukawa hydrocarbon seep deposits in the Nakagawa area, Hokkaido, Japan. Acta Palaeontologica Polonica 54: 463–490.
  • Kaim, A., Bitner, M.A., Jenkins, R.G., and Hikida, Y. 2010. A monospecific assemblage of terebratulide brachiopods in the Upper Cretaceous seep deposits of Omagari, Hokkaido, Japan. Acta Palaeontologica Polonica 55: 73–84.
  • Kanie, Y. and Kuramochi, T. 1996. Description of possibly chemosynthetic bivalves from the Cretaceous deposits of the Obira−cho, northwestern Hokkaido. Science Report of the Yokosuka City Museum 44: 63–68.
  • Kanie, Y., Yoshikawa, Y., Sakai, T., and Takahashi, T. 1993. The Cretaceous chemosynthetic cold water−dependent molluscan community discovered from Mikasa City, central Hokkaido. Science Report of the Yokosuka City Museum 41: 31–36.
  • Kanie, Y., Kuramochi, T., Kanno, S., Mizota, C., Shimizu, M., and Takakuwa, Y. 1999. New occurrence and the shell form of the Middle Miocene Acharax gigas (Bivalvia: Solemyidae) in Gunma Prefecture. Bulletin of Gunma Museum of Natural History 3: 17–23.
  • Kelly, S.R.A., Blanc, E., Price, S.P., and Whitham, A.G. 2000. Early Cretaceous giant bivalves from seep−related limestone mounds, Wollaston Forland, Northeast Greenland. In: E.M. Harper, J.D. Taylor, and J.A. Crame (eds.), The Evolutionary Biology of the Bivalvia, 227–246. Geological Society, London.
  • Kiel, S. 2006. New records and species of molluscs from Tertiary cold−seep carbonates in Washington State, USA. Journal of Paleontology 80: 121–137.
  • Kiel, S. 2010. The fossil record of vent and seep mollusks: Aspects from Microbes to Ecosystems. In: S. Kiel (ed.), The Vent and Seep Biota, 255–277. Springer−Verlag, Dordrecht.
  • Kiel, S. and Campbell, K.A. 2005. Lithomphalus enderlini gen. et sp. nov. from cold−seep carbonates in California—a Cretaceous neomphalid gastropod? Palaeogeography, Palaeoclimatology, Palaeoecology 227: 232–241.
  • Kiel, S. and Little, C.T.S. 2006. Cold−seep mollusks are older than the general marine mollusk fauna. Science 313: 1429–1431.
  • Kiel, S. and Peckmann, J. 2008. Paleoecology and evolutionary significance of an Early Cretaceous Peregrinella−dominated hydrocarbon−seep deposit on the Crimean Peninsula. Palaios 23: 751–759.
  • Kiel, S., Amano, K., and Jenkins, R.G. 2008b. Bivalves from Cretaceous cold−seep deposits on Hokkaido, Japan. Acta Palaeontologica Polonica 53: 525–537.
  • Kiel, S., Amano, K., Hikida, Y., and Jenkins, R.G. 2009. Wood−fall associations from Late Cretaceous deep−water sediments of Hokkaido, Japan. Lethaia 42: 74–82.
  • Kiel, S., Birgel, D., Campbell, K.A., Crampton, J.S., Schiøler, P., and Peckmann, J. (in press). Cretaceous methane−seep deposits from New Zealand and their fauna. Palaeogeography, Palaeoclimatology, Palaeoecology.
  • Kiel, S., Campbell, K.A., Elder, W.P., and Little, C.T.S. 2008a. Jurassic and Cretaceous gastropods from hydrocarbon−seeps in forearc basin and accretionary prism settings, California. Acta Palaeontologica Polonica 53: 1214–1216.
  • Kiel, S., Campbell, K., and Gaillard, C. 2010. New and little known mollusks from ancient chemosynthetic environments. Zootaxa 2390: 26–48.
  • Korringa, P. 1952. Recent advances in oyster biology. Quarterly Review of Biology 27: 266–308.
  • Lawson, A.C. 1914. San Francisco Folio. U.S. Geological Survey Folio 193: 1–24.
  • Leanza, A. 1940. Myoconcha neuquena n. sp. del Lias de Piedra Pintada en El Neuquén. Paleontologia 22: 123–131.
  • Little, C.T.S., Herrington, R.J., Maslennikov, V.V., Morris, N.J., and Zaykov, V.V. 1997. Silurian hydrothermal−vent community from the southern Urals, Russia. Nature 385: 146–148.
  • Little, C.T.S. and Vrijenhoek, R.C. 2003. Are hydrothermal vent animals living fossils? Trends in Ecology and Evolution 18: 582–588.
  • Majima, R., Tanase, S., Uchimura, R., and Honme, T. 1992. Finding of Calyptogena sp. (Bivalvia) from the Neogene of the southern end Boso Peninsula, central Japan. Journal of Geological Society of Japan 98: 373–376.
  • Matsumoto, T. and Harada, M. 1964. Cretaceous stratigraphy of the Yubari Dome, Hokkaido. Memoirs of the Faculty of Science, Kyushu University, Series D, Geology 15: 79–115.
  • Miura, T. and Laubier, L. 1989. Nautilina calyptogenicola, a new genus and species of parasitic polychaete on a vesicomyid bivalve from the Japan Trench, representative of a new family Nautilinidae. Zoological Science 6: 387–390.
  • Miura, T. and Laubier, L. 1990. Nautiliniellid polychates collected from the Hatsushima cold−seep site in Sagami Bay, with descriptions of new genera and species. Zoological Science 7: 319–325.
  • Miura, T. and Hashimoto, J. 1996. Nautiliniellid polychaetes living in the mantle cavity of bivalves from cold seeps and hydrothermal vents around Japan. Publications of the Seto Marine Biological Laboratory 37: 257–274.
  • Morris, N.J. 1978. The infaunal descendants of the Cycloconchidae: an outline of the evolutionary history and taxonomy of the Heteroconchia, superfamilies Cycloconchacea to Chamacea [and discussion by Eagar and Morris]. Philosophical Transactions of the Royal Society of London. B, Biological Sciences 284: 259–275.
  • Morris, N., Dickins, J., and Astafieva−Urbaitis, K. 1991. Upper Palaeozoic anomalodesmatan Bivalvia. Bulletin of the British Museum, Natural History. Geology 47: 51–98.
  • Murphy, M.A. 1956. Lower Cretaceous stratigraphic units of northern California. Bulletin of the American Association of Petroleum Geologists 40: 2098–2119.
  • Murphy, M.A. 1975. Paleontology and stratigraphy of the Lower Chickabally Mudstone Barremian–Aptian in the Ono quadrangle northern California, USA. University of California Publications in Geological Sciences 113: 1–52.
  • Murphy, M.A., Rodda, P.J., and Morton, D.M. 1969. Geology of the Ono quadrangle, Shasta and Tehama counties, California. California Division of Mine and Geology Bulletin 192: 1–28.
  • Nevesskaja, L. 2009. Principles of systematics and the system of bivalves. Paleontological Journal 43: 1–11.
  • Newell, N.D. 1957. Notes on certain primitive heterodont pelecypods. American Museum Novitates 1857: 1–14.
  • Newell, N.D. 1969. Classification of the Bivalvia. In: R.C. Moore (ed.), Treatise on Invertebrate Paleontology, N205–224. Geological Society of America and University of Kansas Press, Lawrence.
  • Ogihara, S. 2005. The evolution of chemosynthetic biological community at the site of cold−seep carbonate precipitation [in Japanese with English abstract]. Fossils 78: 40–46.
  • Peckmann, J., Kiel, S., Sandy, M.R., Taylor, D.G., and Goedert, J.L. 2011. Mass occurrences of the brachiopod Halorella in Late Triassic methane−seep deposits, eastern Oregon. The Journal of Geology 119: 207–220.
  • Rodrigues, S., Sims, M., Kowalewski, M., Petti, M., Nonato, E., Martinez, S., and Del Rio, C. 2008. Biotic interaction between spionid polychaetes and bouchardiid brachiopods: Paleoecological, taphonomic and evolutionary implications. Acta Palaeontologica Polonica 53: 657–668.
  • Sandy, M.R. 1995. A review of some Palaeozoic and Mesozoic brachiopods as members of cold seep chemosynthetic communities: “unusual” palaeoecology and anomalous palaeobiogeographic patterns explained. Földtani Közlöny 125: 241–258.
  • Sandy, M.R. 2010. Brachiopods from ancient hydrocarbon seeps and hydrothermal vents. In: S. Kiel (ed.), The Vent and Seep Biota, 279–314. Springer, Dordrecht.
  • Sandy, M.R., and Campbell, K.A. 1994. New rhynchonellid brachiopod genus from Tithonian (Upper Jurassic) cold seep deposits of California and its paleoenvironmental setting. Journal of Paleontology 68: 1243–1252.
  • Stanton, T. 1895. Contributions to the Cretaceous paleontology of the Pacific coast: the fauna of the Knoxville beds. Bulletin of the United States Geological Survey 133: 11–132.
  • Stewart, R.B. 1930. Gabb's California Cretaceous and Tertiary type lamellibranchs. The Academy of Natural Sciences of Philadelphia, Special Publication 3: 1–314.
  • Squires, R.L. and Saul, L.R. 2006. New Late Cretaceous mytilid and tellinoidean bivalves from California. Veliger. 48: 121–135.
  • Takashima, R., Kawabe, F., Nishi, H., Moriya, K., Wani, R., and Ando, H. 2004. Geology and stratigraphy of forearc basin sediments in Hokkaido, Japan: Cretaceous environmental events on the north−west Pacific margin. Cretaceous Research 25: 365–390.
  • Taylor, J. and Glover, E. 2009. A giant lucinid bivalve from the Eocene of Jamaica−systematics, life habits and chemosymbiosis (Mollusca: Bivalvia: Lucinidae). Palaeontology 52: 95–109.
  • Vašíček, Z. and Skupien, P. 2004. Historie geologických a paleontologických výzkumů svrchnojurských a spodnokřídových sedimentů na Štramberku. Sborník vědeckých prací Vysoké školy báňské – Technické univerzity Ostrava Řada hornicko−geologická 50: 83–102.
  • Voigt, E. 1965. Über parasitische Polychaeten in Kreide−Austern sowie einige andere in Muschelschalen bohrende Würmer. Paläontologische Zeitschrift 39: 193–211.
  • White, C.A. 1885. Mesozoic and Cenozoic paleontology of California. Bulletins of the United States Geological Survey 3 (15): 7–33.
  • Whiteaves, J. 1876. Part 1. On some invertebrates from the coal−bearing rocks of the Queen Charlotte Island. In: Mesozoic Fossils, 1–92. Geological Survey of Canada, Montreal.
  • Wright, J.E. and Wyld, S.J. 2007. Alternative tectonic model for the Late Jurassic thorugh Early Cretaceous evolution of the Great Valley Group, California. Geological Society of America Special Paper 419: 1–15.
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.