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Summary 

This paper proposes new classifiers under the assumption of multivariate normality for mul-
tivariate repeated measures data (doubly multivariate data) with Kronecker product covariance 
structures. These classifiers are especially useful when the number of observations is not large 
enough to estimate the covariance matrices, and thus the traditional classifiers fail. Analysis of 
these data using a MANOVA model is also considered. The quality of these multivariate statistical 
methods is examined on some real data. 
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1. Introduction 

The problem we consider in this paper is the following. Given that an ob-
ject (or person) is known to come from one of K distinct classes, we wish to 
assign the object to one of these classes on the basis of p characteristics associ-
ated with the object, measured at T different time points. Such data are often 
referred to in the statistical and behavioral science literature as the multivariate 
repeated measures data or doubly multivariate data. To distinguish the known 
classes from each other, we associate a unique class label y with each class; the 
observations are then described as labeled observations. We denote information 
on the typical object by x, a (pT × 1) – dimensional column vector obtained by 
stacking all p characteristics at the first time point, then stacking all p characte-
ristics at the second time point below it and so on. 

Next, assume that 

x ~ NpT (µµµµ, ΩΩΩΩ) 

with pT × pT positive definite covariance matrix ΩΩΩΩ. 
The optimal Bayes classifier is 

g(x) = ( )xii
Ki

fπmaxarg
1 ≤≤

 

where πi = P(y = i) is the prior probability that x is a member of a class i,  
π1 + π2 +…+ πK = 1, and fi(x) = fi(xy = i) is the normal probability density 
function associated with the random vector x for a class i, i = 1, 2,…, K. 

When µµµµ and ΩΩΩΩ are unknown, they must by estimated on the basis of the 
training data set Dn = {(xi, yi)}, i = 1, 2,…, n, observed in the past, that is, a set 
of n observations is available for which the true categorization is known. The 

matrix ΩΩΩΩ is positive definite. Its estimate ΩΩΩΩ̂  is positive definite with probability 
one if and only if n > pT (see e.g. Giri (1996), p.93). Hence, estimation of the 
parameters µµµµ and ΩΩΩΩ will require a very large sample, which may not always be 
feasible. Hence, we assume ΩΩΩΩ to be of the form (Roy and Khattree 2005a, 
2005b, 2008): 

Ω = V ⊗ ΣΣΣΣ, 

where V is a T × T positive definite covariance matrix and ΣΣΣΣ is p × p positive 
definite covariance matrix. The matrix V represents the covariance between 
repeated measures on a given subject and for a given characteristic. Likewise, ΣΣΣΣ 
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represents the covariance between all characteristics on a given subject and for 
a given time point. The above covariance structure is subject to an implicit as-
sumption that for all characteristics, the correlation structure between repeated 
measures remains the same and that covariance between all characteristics does 
not depend on time and remains constant for all time points. 

In this case the estimates of the matrices V and ΣΣΣΣ are positive definite with 
probability one if and only if n > max(p, T). 

Classification rules for univariate repeated measures data were given by 
Roy and Khattree (2005a). Classification rules in the case of multivariate re-
peated measures data under the assumption of multivariate normality for classes 
and with compound symmetric correlation structure on the matrix V were given 
by Roy and Khattree (2005b). Next, Roy and Khattree (2008) gave the solution 
of this problem for the case where the correlation matrix V has the first order 
autoregressive (AR(1)) structure. Next, Krzyśko and Skorzybut (2009) gave the 
solution of this problem in the case when no structures whatsoever are imposed 
on V and ΣΣΣΣ except that they are positive definite. 

Analysis of this data using a one-way MANOVA model is also considered. 
The problems of interest are to test for the (i) time effect, (ii) group effect, and 
(iii) the effect of interaction between time and group. 

This paper is organized as follows. In Section 2 quadratic and linear classi-
fiers are presented. A mixed effects MANOVA model is considered in Section 
3. Section 4 examines the quality of the various multivariate statistical methods 
on some real data. 

2. Quadratic and linear classifiers 

Suppose that no structures whatsoever are assumed on V and ΣΣΣΣ except that 
they are positive definite. In this case the classifier has the form 

g(x) = ( )( ),πlnmaxarg
1

xii
Ki

f
≤≤

 

where 

f i(x) = ( ) ( ) ( )( )




 −⊗′−−π −−−−−
i

1
i

1
ii

2

T

i
2

p

i2

pT

2

1
exp2 µxΣVµxΣV , 
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and πi is the prior probability that an observation x is from class i. 
The parameters µµµµi, V i and ΣΣΣΣi are unknown and should be estimated relying 

on K training samples of sizes n1, n2,…, nK from the respective classes. 
Let xijk (k = 1, 2,…, T; j = 1, 2,…, ni; i = 1, 2,…, K) be a p × 1 column vec-

tor of measurements on the jth individual in the ith class at the kth time point 
and 

xij = ( )′′′′ Tij2ij1ij ,...,, xxx . 

Then xij is a pT × 1 random observational vector corresponding to the jth 
individual in the ith class. 

We consider a model described as follows: 

 all observations xij are independent and xij ~ NpT (µµµµI, V i ⊗ ΣΣΣΣi), (2.1) 

where V i is a T × T positive definite matrix and ΣΣΣΣi is a p × p positive definite 
matrix, j = 1, 2,…, ni, ni > max(p, T), i = 1, 2,…, K. 

Given a sample of ni random observations X i = ( )
iiii n21 ,...,, xxx  from  

NpT (µµµµI, V i ⊗ ΣΣΣΣi), the log likelihood function is given by 

     
( )

( )[ ] ( )( )( ) ,n
2

1

2

1

lnTn
2

1
lnpn

2

1
)2ln(pTn

2

1
;,,ln

1111

1111





 ′−−⊗−⊗−

++−=

−−−−

−−−−

iiiiiiiiii

iiiiiiiii

trtr

L

µxµxΣVAΣV

ΣVXΣVµ π
 (2.2) 

where 

∑=
=

i

1j
ij

i
i

1 n

n
xx  

and 

( ) ( )( )




















=∑
′==

=

iii
1

i
2

i
22

i
21

i
1

i
12

i
11

1j
iijiij

i
rsi

i

a

TTT2T

T

T

n

--

AAA

AAA

AAA

xxxxA

K

MOMM

K

K

 

(2.3)
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is the block matrix containing T2 blocks, where ( )′= i
kj

i
jk AA . 

It can be seen that the maximum likelihood estimate of µµµµi is iiˆ xµ = . Therefore, 

substituting iiˆ xµ =  in (2.2) we obtain 

( )

( )[ ] .K,...,2,1,
2

1

lnTn
2

1
lnpn

2

1
)2ln(pTn

2

1
;,,ln

11

1111

=⊗−

++−=

−−

−−−−

itr

L

iii

iiiiiiiii

AΣV

ΣVXΣVµ π
   

Let 

                          

( )




















==

∗∗∗

∗∗∗

∗∗∗

∗∗

iii
1

i
2

i
22

i
21

i
1

i
12

i
11

i
rsi a

ppp2p

p

p

AAA

AAA

AAA

A

K

MOMM

K

K

,                    (2.4) 

where ( )′= ∗∗ i
kj

i
jk AA . 

The blocks 

( )jki
rs

i
jk a ∗∗ =A

 

are constructed with the elements of the matrix ( )i
rsi a=A : 

( ) ( )
i

1sk,1rj
jki

rs aa pp −+−+
∗ =

, 

r, s = 1, 2,…, T; j, k = 1, 2,…, p; i = 1, 2,…, K. 
Let 

( )1
i

i
jki tr −= ΣAB    (2.5) 

and 

( )1
i

i
jki tr −∗= VAC ,   (2.6) 

i = 1, 2,…, K. 
 

Then the following formulae hold: 
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( )[ ]
ii1

i

i
1

i
1

i diag2
tr

BB
V

AΣV −=
∂

⊗∂
−

−−

 

and 

( )[ ]
ii1

i

i
1

i
1

i diag2
tr

CC
Σ

AΣV −=
∂

⊗∂
−

−−

, 

i = 1, 2,…, K. 

Differentiating the ( )iiiiL XΣVµ ;,,ln 11 −−  with respect to 1
i
−V  and equating 

it to zero results in the equation 
 

i
i

i

1
BV

pn
=     (2.7) 

 

where ( )1
i

i
jki tr −= ΣAB , i = 1, 2,…, K. 

Differentiating the ( )iiiiL XΣVµ ;,,ln 11 −− with respect to 1
i
−Σ and equating it 

to zero results in the equation 
 

i
i

i

1
CΣ

Tn
=     (2.8) 

 

where ( )1
i

i
jki tr −∗= VAC , i = 1, 2,…, K. 

In this case no explicit maximum likelihood estimators are available. The 
MLEs of iV  and iΣ are obtained by solving simultaneously and iteratively the 
equations (2.7) and (2.8). 
The following iterative steps are suggested to obtain the maximum likelihood 
estimators of iV  and iΣ , i = 1, 2,…, K. 

 
Algorithm 1 
Step 1. Compute iA  and ∗

iA  from the equations (2.3) and (2.4), respectively. 

Get the initial covariance matrix iΣ of the form 



ANALYSIS OF MULTIVARIATE REPEATED… 123 

( )( )∑∑
= =

′−−==
i

j k
ikijkikijk

i
ii

n

1

T

1Tn

1~
xxxxSΣ ,     (2.9) 

where 

 
∑=
=

i

1j
ijk

i
ik

1 n

n
xx , i = 1,…, K, k = 1,…, T.         

Step 2. On the basis the initial covariance matrix Si and the matrix A i compute 
the matrix Bi given by (2.5). 
Step 3. Compute the matrix V i from equation (2.7) using Bi obtained in Step 2. 
Step 4. Compute the matrix Ci from (2.6) and the matrix iΣ  from (2.8). 

Step 5. Compute the matrix Bi given by (2.5) using the matrix iΣ  obtained in 

Step 4 and next compute the matrix V i from (2.7). 

Step 6. Compute the matrix Ci from (2.6) using ( )1
iV  obtained in Step 5 and 

next compute the matrix iΣ  from (2.8). 

Step 7. Repeat Steps 2 to 6 until convergence is attained. We have selected the 
following stopping rule. Compute two matrices: (a) a matrix of difference be-
tween two successive solutions of (2.7), and (b) a matrix of difference between 
two successive solutions of (2.8). 
Continue the iterations until the maxima of the absolute values of the elements 
of the matrices 
in (a) and (b) are smaller than the pre-specified quantities. 

As noted in the literature, see, e.g. Galecki (1994) and Naik and Rao 
(2001), since 

(cV ) ⊗ (c-1 ΣΣΣΣ) = V ⊗ ΣΣΣΣ, 

all the parameters of V and ΣΣΣΣ are not defined uniquely. Hence, Srivastava et al. 
(2008) took into consideration the maximum likelihood estimators of V and ΣΣΣΣ 
under the restriction vTT = 1, or equivalently under the restriction σpp = 1 for  
ΣΣΣΣ = (σij) instead vTT = 1 making the parameters of V and ΣΣΣΣ unique. 

For ( )( )i
rsi v=V , we only assume that ( )ivTT = 1. 

Let 
X ij = ( )Tij2ij1ij ,...,, xxx ,  

∑=
=

i

1j
ij

i
i

1 n

n
XX ,  
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iijijc XXX −=
,  

and 

 
( ) ( )( )1:1:: ijc1ijcijc ×−×= pTpTXXX

,     

j = 1,…, ni, i = 1,…, K. 
In this case the maximum likelihood estimation equations are of the form 

(Srivastava et al., 2008): 

                                              ( )ii vecˆ Xxµ == , 

∑ ′=
















∑ ′∑ ′
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−
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−
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1j
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1j
1ijc

1
iijc

1j
ijc

1
i1ijc

1j
1ijc

1
i1ijc

i
i

ˆ1

ˆˆ

ˆˆ
1ˆ

n

n

TT

n

T

n

T

n

pnpn
XΣX

XΣXXΣX

XΣXXΣX
V

, (2.10) 

and 

     
∑ ′=
=

−i

1j
ijc

1
iijc

i
i

ˆ1ˆ
n

Tn
XVXΣ ,        (2.11) 

 
subject to the condition 

 
pn

n

TT i
1j

ijc
1

iijc

i ˆ =∑ ′
=

− XΣX , i = 1, 2,…, K.   (2.12) 

In this case no explicit maximum likelihood estimates of iV  and iΣ  are 

available. The MLEs of iV  and iΣ  are obtained by solving simultaneously and 
iteratively the equations (2.10) and (2.11) subject to the condition (2.12). This 
is the so called ”flip-flop” algorithm.  

The results given above are summarized in the following theorem: 
Theorem 1 (Srivastava et al., 2008) In the model (2.1) with vTT = 1 , if  
ni > max(p, T) then the maximum likelihood estimation equations given by 
(2.10) and (2.11) subject to the condition (2.12) will always converge to the 
unique maximum. 
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The following iterative steps are suggested to obtain the maximum likeli-
hood estimates of iV  and iΣ , i = 1, 2,…, K. 

Algorithm 2 
Step 1. Get the initial covariance matrix iΣ  of the form (2.9), i = 1, 2,…, K. 

Step 2. On the basis the initial covariance matrix Si compute the matrix 

iV̂ given by (2.10) and replace all the elements( )i
rsv̂ by ( ) ( )ii

rs v̂/v̂ TT . 

Step 3. Compute the matrix iΣ̂ from the equation (2.11) using the iV̂  obtained 
in Step 2. 
Step 4. Repeat Steps 2 and 3 until convergence is attained. We have selected 
the same stopping rule as in Algorithm 1. 

So we have two types of estimates of the matrices iV  and iΣ : without re-
strictions – as iterative solutions of equations (2.7) and (2.8) and with restric-
tions – as the iterative solutions of equations (2.10) and (2.11) subject to the 
condition (2.12). 

In practice, if iV̂  and iΣ̂  are the estimates of the matrices iV  and 

iΣ without restrictions, it is sufficient to divide each element of the matrix iV̂  

by ( )iv̂TT   and multiply every element in the matrix iΣ̂ by ( )iv̂TT  to get the estimates 

of the matrices iV  and iΣ with restrictions. Since the classifiers and the test 
functions considered in this paper do not depend on restrictions (2.12), we will 
not consider them further. 

The form of the obtained classifier is presented in the following theorem. 
 
Theorem 2 (Krzyśko and Skorzybut, 2009) The classifier based on K training 
samples of sizes n1, n2,…, nK  from the respective classes has the form 

( ) ( )xx 1i
Ki1

1
ˆmaxargĝ δ=

≤≤
, 

where 

    
( ) ( ) ( )( ) ii

1
i

1
iiii1i ˆlnˆˆ

2

1ˆln
2

ˆln
2

ˆ π+−⊗′−−−−=δ −− xxΣVxxΣVx
Tp

    
(2.13) 

is the quadratic classification function, ∑=
=

i

1j
ij

i
i

1 n

n
xx , ∑=π

=

K

nn
1j

jii /ˆ , and where 

iV̂  and iΣ̂  are obtained by solving simultaneously and iteratively the equa-

tions (2.10) and (2.11). 
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Suppose now that VVVV ==== KK21 , ΣΣΣΣ ==== KK2i . In 
this case the maximum likelihood estimation equations are of the form: 

( )ii vecˆ Xxµ == , 

∑∑ ′=
= =

−K n

np 1i 1j
ijc

1
ijc

i ˆ1ˆ XΣXV ,   (2.14) 

 

∑∑ ′=
= =

−K n

nT 1i 1j
ijc

1
ijc

i ˆ1ˆ XVXΣ ,   (2.15) 

 
where 

   nnnn K =+++ K21 .     
 

The starting value of Σ̂  can be based on the estimate 

 
( )( )∑∑

′−−=
= =

K n

nT 1i 1j
iijiij

i1
XXXXS .

     

The form of the obtained classifier is presented in the following theorem. 
 

Theorem 3 The classifier based on K training samples of sizes n1, n2,…, nK  
from the respective classes has the form 

( ) ( )xx 2i
Ki1

2
ˆmaxargĝ δ=

≤≤
,
 

where 

( ) ( ) ( ) iiii πδ ˆlnˆˆ
2

1ˆˆˆ 1111
2 +⊗′−⊗′= −−−− xΣVxxΣVxx

  
(2.16) 

 
is the linear classification function, ix  is given by (2.13), nn /ˆ ii =π , 

 n = n1 + n2 +…+ nK , and where V̂  and Σ̂  are obtained by solving simultane-
ously and iteratively the equations (2.14) and (2.15). 
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3. A mixed effects MANOVA model 

Consider a mixed effects MANOVA model (similar to the split-plot design 
model of the univariate analysis of the usual repeated measures data) with the 
effects of the subjects within a class being random. Then the MANOVA table 
(which is similar to the ANOVA table for the split-plot design model) can be 
given as in Table 1 (Naik and Rao, 2001). 
 

Table 1. MANOVA table for mixed effects model 
 

Source df SS and CP Distribution under H0 
Between Groups    
Groups K – 1 Q1 Wp(K – 1, ΣΣΣΣ) 
Individuals n – K Q2 Wp(n – K, ΣΣΣΣ) 
Within Groups    
Time T – 1 Q3 Wp(T – 1, ΣΣΣΣ) 
Time × Groups (T – 1)(K – 1) Q4 Wp((T – 1)(K – 1), ΣΣΣΣ) 
Error (T – 1)( n – K) Q5 Wp((T – 1)( n – K), ΣΣΣΣ) 

Total nT – 1 X(InT – 
nT

1 JnT)X′  

 
Here X, the nT × p matrix, is defined as   

X = ( 111x ,…, T11x ,…, 1n1 1
x ,…, Tn1 1

x ,…, 1Kn K
x ,…, TKn K

x )′. 

The matrix quadratic forms Q1 – Q1 are 

( )( ) ,n 1.....i
1i

.....ii1 XAXxxxxQ ′=′−∑ −=
=

K

T
 

( )( ) ,2
1i

n

1j
..i.ij..i.ij2

i

XAXxxxxQ ′=∑∑
′−−=

= =

K

T  

( )( ) ,3
1k

...k.....k..3 XAXxxxxQ ′=∑
′−−=

=

T

n
 

( )( ) ,n 4
1i 1k

...k....ik.i...k....ik.ii4 XAXxxxxxxxxQ ′=∑ ∑
′+−−+−−=

= =

K T
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( )( ) XAXxxxxxxxxQ 5
1i

..ik.i.ijijk

n

1j 1k
..ik.i.ijijk5

i
′=∑

′+−−∑∑ +−−=
= = =

K T

 

with the appropriate choice of symmetric matrices A1 – A5 of order nT × nT and 
with the usual notations for the sample average. The matrices A1 – A5 can be 
easily derived (for example, see Geisser and Greenhouse, 1958). The matrix 
quadratic forms Q1 – Q5 are independent of each other and under the appropri-
ate null hypothesis each has a scale multiple of a Wishart distribution with ap-
propriate degrees of freedom. See the work of Khatri (1962), Arnold (1979), 
Reinsel (1982), and Mathew (1989) in this regard. 

Suppose we wish to test H01 of no class effect. Then the Wilks’ Λ for test-
ing H01 is (Naik and Rao, 2001) 

    Λ1 = 
21

2

QQ

Q

+
.    (3.1) 

We have 

( ) ( )
2

11 ~ln
2

1
1 −χΛ




 −−−−− KpKpKn  approximately, 

 
where n = n1 + n2 +…+ nK. 

For testing H02, that there is no time effect, one can use the Wilks’ Λ, 
which is 

    Λ2 = 
53

5

QQ

Q

+
    (3.2) 

 
and the fact that 
 

( ) ( ) 2
ph2 ~lnh1p

2

1
1hKn χΛ




 −+−−−−  approximately,  (3.3) 
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2

1
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1
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
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



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JVV

JVV

T
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Similarly, for testing H03, that there is no time and group interaction, the 
Wilks’ Λ is 

      Λ3 = 
54

5

QQ

Q

+
    (3.4) 

 
and the distribution of the test statistic is 
 

( ) ( )( ) ( )
2

h1-Kp3 ~lnh1K1p
2

1
hKn χΛ




 −−+−−−  approximately.  (3.5) 

 
Since in practice V is unknown, the degrees of freedom in the χ2 approxima-
tions of (3.3) and (3.5) are unknown. One needs to estimate these so that the 
distributions in (3.3) and (3.5) can be utilized in applications. For estimating 

these degrees of freedoms, which are functions of JVV
T

1− , we simply need 

an estimate of V. One can use the maximum likelihood estimate of V that is 
obtained by simultaneously solving the equations (2.14) and (2.15). 
 

4. Example 

Plant material. Studies were conducted on 4–6-year-old bushes of the black-
currant (Ribes nibrum L.) being in the full fruit-bearing phase. They were 
grown in a cultivar trail established in the autumn of 1996 at the Experimental 
Orchard in Dabrowice (near Skierniewice, central Poland). The field experi-
ment was established in a randomized complete block design in 3 replicates 
(with 5 plants on every plot). Fourteen genotypes were evaluated, including 8 
cultivars with diverse features and originating from different geographical areas 
of Europe (Pluta 1994, 1996, Pomologia – annex 2003) and 6 breeding clones 
released at the Institute of Pomology and Floricultures (ISK) in Skierniewice. 
The list of studied genotypes, their parentage and countries of origin are pre-
sented in Table 2. The studies were carried out in 1999–2001. 
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Table 2. List of blackcurrant genotypes studied in the experiments, their parentage 
 and country of origin 

 

No. 
Name of cultivar/ 
breeding clone 

Parentage 
Country  
of Origin 

1 Ojebyn unknown Sweden 
2 Titania Ałtajskaja D. x (Consort x Kajaanin Musta) Sweden 
3 Ben Lomond (Consort x Mangus) x (Brodtorp x Janslunda) Scotland 
4 Lentaj Brodtorp x Minaj Szmyriew Russia 
5 Sjuta Kijewskaja (Junost x Zoja) x Minaj Szmyriew Ukraine 

6 Czereszniewa 
[B-36-16 x (Junost x Zoja)] x [(Minaj Szmyriew 
x Biełoruskaja Słodkaja)] 

Ukraine 

7 Czornyj śemczug Minaj Szmyriew x Brodtorp Russia 
8 Sanjuta (Junost x Zoja) x Minaj Szmyriew Ukraine 
9 (PC-1) Gofert Gołubka x Fert?di-1 Poland 
10 PC-3 Biełoruskaja Słodkaja x Titania Poland 
11 PC-8 Smuglianka x Westwick Triumf Poland 
12 PC-9 Ojebyn x Titania Poland 
13 PC-20 Ben Lomond x 7/72 Poland 
14 PC-23 Ben Lomond x 7/72 Poland 

 
Measurement and observations. In each year of evaluation, measure-

ments were performed on 210 plants in the experiment (14 genotypes x 15 
plants). On every  individual plant the following measurements and observa-
tions of features were carried out: 

1. Number of one-year-old shoots (per bush) 
2. Number of strigs on one-year-old bush 
3. Number of flowers in raceme 
4. Number of fruits in the strig 
5. Number of fruits on one-year-old shoots 
6. Weight of 100 fruits (g) 
7. Fruit yield (kg/bush). 

Statistical analysis. A justification for using one-way MANOVA for 
analysis of data from an experiment carried out in a randomized complete block 
design (in this experimental design, data are arranged in a two-way classifica-
tion with one observation in subclasses) is the fact that the effects of blocks in 
the corresponding ANOVA model were not significant for most traits. To inves-
tigate the discriminating power of individual features sequentially, quadratic 
and linear classifiers were used. First the misclassification errors were found for 
individual characteristics using the quadratic classifier (2.13). Then the charac-
teristic with the lowest misclassification error was augmented with further char-
acteristics. The pair of characteristics with the lowest misclassification error 
was augmented with other characteristics, and so on. 
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It turned out that the optimal subset is a subset of characteristics (7, 6, 2, 5, 
3, 4) for which the misclassification error is equal to 4.29%. 

Augmenting this subset with characteristic number 1 increases the misclas-
sification error. If we use the linear classifier (2.16), the optimal subset is a 
subset of characteristics (7, 6, 2, 5, 2). In this case, the misclassification error is 
equal to 6.67%. 

 

 
 

Fig. 1. Plotted values of the first two principal components for the mean of 14 genotypes 
 
 
Let us now consider the hypothesis H01 of the non-differentiation of 14 

genotypes of blackcurrants with respect to the 7 observed characteristics. The 
value of the statistic given in (3.1) is Λ1 = 0.0091. Then the test statistic value is 
equal to 937.5464. Comparing this with χ2

91(0.05) = 114.2679, we clearly reject 
H01. This means that the tested genotypes differ significantly in terms of at least 
one characteristic. 

Another hypothesis that we want to verify is the hypothesis H02, that there 
is no time effect. The value of the statistic given in (3.2) is Λ2 = 0.0952. Then 
the test statistic value is equal to 9852.7594. Comparing this with χ2

13(0.05) = 
22.3620, we clearly reject H02. This means that during the observation years, the 
characteristics changed their values (at least one). 
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The hypothesis H03 says that there is no time and genotype interaction. In 
this case the value of the statistic given in (3.4) is Λ3 = 0.0395. Then the test 
statistic value is equal to 1207.2. Comparing this with χ2

170(0.05) = 201.4234, 
we clearly reject H03.  

Plotted values of the first two principal components given by Deręgowski 
and Krzyśko (2009) for the mean of 14 genotypes are shown in Figure 1. 
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ANALIZA DANYCH WIELOWYMIAROWYCH  
POCHODZĄCYCH Z POWTARZANYCH POMIARÓW  

NA TYCH SAMYCH JEDNOSTKACH 

Streszczenie 

W artykule tym zaproponowano nowe klasyfikatory liniowe i kwadratowe skonstruowane na 
podstawie danych wielowymiarowych pochodzących z powtarzanych pomiarów (danych podwój-
nie wielowymiarowych). Rozpatrywany jest równieŜ model mieszany wielowymiarowej analizy 
wariancji. Jakość rozpatrywanych wielowymiarowych metod statystycznych jest weryfikowana na 
danych pochodzących z wieloletniego doświadczenia z czarną porzeczką. 

Słowa kluczowe: klasyfikatory, dane pochodzące z powtarzanych pomiarów (dane podwójnie 
wielowymiarowe), macierze kowariancji o strukturze iloczynu Kroneckera, model mieszany wie-
lowymiarowej analizy wariancji. 
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