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Summary

This paper proposes new classifiers under the gasamof multivariate normality for mul-
tivariate repeated measures data (doubly multiteudata) with Kronecker product covariance
structures. These classifiers are especially uselfidn the number of observations is not large
enough to estimate the covariance matrices, ansgl ttinel traditional classifiers fail. Analysis of
these data using a MANOVA model is also considefea. quality of these multivariate statistical
methods is examined on some real data.
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1. Introduction

The problem we consider in this paper is the foilmy Given that an ob-
ject (or person) is known to come from onekoflistinct classes, we wish to
assign the object to one of these classes on #is bfp characteristics associ-
ated with the object, measuredTatlifferent time points. Such data are often
referred to in the statistical and behavioral soeeliterature as the multivariate
repeated measures data or doubly multivariate datadistinguish the known
classes from each other, we associate a unique lalasly with each class; the
observations are then described as labeled obgsrsatVe denote information
on the typical object by, a T x 1) — dimensional column vector obtained by
stacking allp characteristics at the first time point, then kitag all p characte-
ristics at the second time point below it and so on

Next, assume that

X~ Nyt (4, Q)

with pT x pT positive definite covariance matrQ.
The optimal Bayes classifier is

9(x) = arg maxn, f, (x)

whereTt = Py = i) is the prior probability thak is a member of a clads
T +Th +...+ Tk = 1, and {x) = fi(xOy = i) is the normal probability density
function associated with the random veotdor a class, i =1, 2,...,K.

Whenpu and Q are unknown, they must by estimated on the bdsikeo
training data set P= {(x, ¥)}, i =1, 2,...,n, observed in the past, that is, a set
of n observations is available for which the true catigtion is known. The
matrix Q is positive definite. Its estima@ is positive definite with probability
one if and only ifn > pT (see e.g. Giri (1996), p.93). Hence, estimatiothef
parametergt andQ will require a very large sample, which may navays be
feasible. Hence, we assur@eto be of the form (Roy and Khattree 2005a,
2005b, 2008):

Q=v0Oz

whereV is aT x T positive definite covariance matrix a@dis p x p positive
definite covariance matrix. The matr represents the covariance between
repeated measures on a given subject and for a gheracteristic. Likewise,
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represents the covariance between all charactsrigti a given subject and for
a given time point. The above covariance strucisigubject to an implicit as-
sumption that for all characteristics, the corielatstructure between repeated
measures remains the same and that covariancedrebMlecharacteristics does
not depend on time and remains constant for a# points.

In this case the estimates of the matri¢cesndX are positive definite with
probability one if and only i > max(, T).

Classification rules for univariate repeated meeswtata were given by
Roy and Khattree (2005a). Classification rulesha tase of multivariate re-
peated measures data under the assumption of aridti® normality for classes
and with compound symmetric correlation structundhe matrixV were given
by Roy and Khattree (2005b). Next, Roy and Khat{@8®8) gave the solution
of this problem for the case where the correlatimtrix V has the first order
autoregressive (AR(1)) structure. Next, Kilzy and Skorzybut (2009) gave the
solution of this problem in the case when no stmeg whatsoever are imposed
onV andZ except that they are positive definite.

Analysis of this data using a one-way MANOVA modgehlso considered.
The problems of interest are to test for the (ietieffect, (ii) group effect, and
(iii) the effect of interaction between time anagjp.

This paper is organized as follows. In Section adyatic and linear classi-
fiers are presented. A mixed effects MANOVA modektonsidered in Section
3. Section 4 examines the quality of the varioudtivariate statistical methods
on some real data.

2. Quadratic and linear classifiers

Suppose that no structures whatsoever are assumédind except that
they are positive definite. In this case the cfesshas the form

909 = arg maxin(x, f, (x)),

where

00 = (e 2 vz = exg =56 (2 022 e
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andrt is the prior probability that an observatiois from class.

The parameterg;, V; andZ; are unknown and should be estimated relying
onK training samples of sizasg, n,,..., Nk from the respective classes.

Letxy (k=1,2,...,T;j=1,2,...,n; i = 1, 2,...,K) be ap x 1 column vec-
tor of measurements on tih individual in theith class at théth time point
and

U
I I I
Xij :(Xijl,Xijz,...,XijT) .
Thenx; is apT x 1 random observational vector corresponding tojtine

individual in theith class.
We consider a model described as follows:

all observations; are independent angl ~ Nyt (1, Vi O Z), (2.1)
whereV; is aT x T positive definite matrix and; is ap x p positive definite

matrix, j=1, 2,....,n, ;> maxp, T),i=1,2,...,K.
Given a sample ofy random observation¥; = (Xi11Xi21"'!Xin,) from

Npr (W, Vi O %), the log likelihood function is given by

In L(ui ,Vi‘l,Zi‘l;Xi)= —%ani In(27m) +%pni In|Vi‘1| +%Tni In|2‘.i‘1|

(2.2)
_%tr [(Vi_1 O z“i_l)Ai]_% nitr[(\/i_l 0 Zi_l)(xi Bl )(Xi Il ),}
where
Y| :igxi]
n =
and
A_ill Aflz A_‘lT
A :(airs):%(xij '7i)(Xij - X )’ = A:Zl A:zz AEZT (2.3)

An An o A
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is the block matrix containin@ blocks, whereA', = (A 'kJ) .
It can be seen that the maximum likelihood estinsdye is p, =X;. Therefore,
substitutingp, =X, in (2.2) we obtain

In L(pi VLI X ) = —%ani In(27) +%pni |n\v;1\ +%Tni In‘):i‘l‘

—%tr[(v;l oEA]i=12..k.

Let
ALl AL ... A
i0 i0 i0
A!j:(aim): Aun An .. Ay (2.4)
ia i0 ia
Ag An o AL
where A}/ = (A'kf') :
The blocks
A =(d)
are constructed with the elements of the ma#ix= (airs):
igk — Ai
a; = aj+(r—1)p,k+(s—l)p ,
rs=12,..Tjk=12,..pi=12,.K
Let
B, =(trAl, =) (2.5)
and
C, =(ral?v), (2.6)
i=1,2,..K

Then the following formulae hold:
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P -1 “1)a .
trl(v, a\?ifl A 2B, - diagB,
and
P -1 “1)p .
tr[(V, aXD‘i—:LZI )A'] = ZCI _d|a$i
i=1,2,...K

Differentiating then L(ui ,v;l,z;l;xi) with respect toV,™ and equating
it to zero results in the equation

2.7)

whereB, = (trAijkEi_l), i=1,2,...K
Differentiating theln L(ui NV ILETX, )With respect t&; ' and equating it
to zero results in the equation

r =—C (2.8)

whereC, = (trAV,*),i=1,2,... K.

In this case no explicit maximum likelihood estiorat are available. The
MLEs of V, and X, are obtained by solving simultaneously and iteedyithe
equations (2.7) and (2.8).

The following iterative steps are suggested to iabifae maximum likelihood
estimators ofV; andX;,i=1, 2,... K.

Algorithm 1
Step 1 Compute A, and AiD from the equations (2.3) and (2.4), respectively.

Get the initial covariance matriX; of the form
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i :ﬁ > i( uk )( uk Xik)" (2'9)

where

Step 2 On the basis the initial covariance matg»xand the matriXA; compute
the matrixB; given by (2.5).

Step 3 Compute the matri¥; from equation (2.7) using; obtained in Step 2.
Step 4 Compute the matri€; from (2.6) and the matrixi; from (2.8).

Step 5 Compute the matri; given by (2.5) using the matriX;, obtained in
Step 4and next compute the matié from (2.7).

Step 6 Compute the matrixC; from (2.6) usingVi(l) obtained in Step 5 and
next compute the matrix, from (2.8).

Step 7. Repeat Steps 2 to 6 until convergence is attaMétdhave selected the
following stopping rule. Compute two matrices: éajnatrix of difference be-
tween two successive solutions of (2.7), and (bla#rix of difference between
two successive solutions of (2.8).
Continue the iterations until the maxima of theddi® values of the elements
of the matrices
in (a) and (b) are smaller than the pre-specifigaindjties.

As noted in the literature, see, e.g. Galecki (1984d Naik and Rao
(2001), since

(cV)O(c'T)=vDOZ,

all the parameters of andZ are not defined uniquely. Hence, Srivastava et al.
(2008) took into consideration the maximum likebldoestimators oV andZ
under the restrictionyy = 1, or equivalently under the restrictia, = 1 for
2 = (oy) instead yr = 1 making the parameters\éfandZ unique.
ForV, = (vf's)) we only assume that!) = 1.
Let
Xij = (Xijl1Xij2""1XijT)-

X, =

x.. ,

1

13
n

|| M_



124 MIROSEAW KRZYSKO | INNI

and
Xie =(Xijcl:xich):(px(T _1): px )

i=1...,n,i=1,... K
In this case the maximum likelihood estimation dmuns are of the form
(Srivastava et al., 2008):

p=X = ve({Yi)

. DI i SR 1 S o O .
\V2 _ 1= = :iz':x{_ yix
L onpiSx g $xe_gix | npiE T, (210)
=1 ijcT “=i jjcl =1 ijcT i ijcT
and
5} :iTzixijCVi‘lx;jC , 2.12)
Nl =
subject to the condition
YXGENX o =np,i=1, 2, K. (2.12)
=1

In this case no explicit maximum likelihood estiemif V; and X, are

available. The MLEs oV, and X, are obtained by solving simultaneously and

iteratively the equations (2.10) and (2.11) subjecthe condition (2.12). This
is the so called "flip-flop” algorithm.

The results given above are summarized in theviatig theorem:
Theorem 1 (Srivastava et al., 2008)n the model (2.1) withvyr = 1, if
n > max@, T) then the maximum likelihood estimation equationgemiby
(2.10) and (2.11) subject to thmndition (2.12) will always converge to the
unique maximum.
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The following iterative steps are suggested to iobtiae maximum likeli-
hood estimates oY, andX;,i=1, 2,... K.
Algorithm 2
Step 1 Get the initial covariance matriX; of the form (2.9),1=1, 2,..K.
Step 2 On the basis the initial covariance matx compute the matrix
V, given by (2.10) and replace all the elemérfpy 1) /9() .

Step 3 Compute the matrix:, from the equation (2.11) using thé obtained
in Step 2.

Step 4 Repeat Steps 2 and 3 until convergence is attaM& have selected
the same stopping rule as in Algorithm 1.

So we have two types of estimates of the matriesind X, : without re-
strictions — as iterative solutions of equationgYand (2.8) and with restric-
tions — as the iterative solutions of equationd@®.and (2.11) subject to the
condition (2.12).

In practice, if \A/i and ii are the estimates of the matric&§ and
X, without restrictions, it is sufficient to divide @aelement of the matri)f/i
by \A/Q and multiply every element in the matrﬁ by\?ﬂ to get the estimates

of the matricesV,; and X; with restrictions. Since the classifiers and thet te

functions considered in this paper do not dependestrictions (2.12), we will
not consider them further.
The form of the obtained classifier is presentethefollowing theorem.

Theorem 2 (Krzysko and Skorzybut, 2009)The classifier based on K training
samples of sizeg,m,,..., k. from the respective classes has the form

,(x)=argmaxs, ().

1<is<K

where

Sil(x):—gln‘vi‘—%In‘f:i‘—%(x—ii)’(\?i‘lD)i[l)(x—ii)+lnﬁ (2.13)

. . I . _1an A K
is the quadratic classification functiox, =—3.x; , Tt =n /> n;, and where
n =t =1

V. and i‘.i are obtained by solving simultaneously and itery the equa-

tions (2.10) and (2.11).
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Suppose now thav, =V, =...=V, =V, X =X, ==X, =X. In
this case the maximum likelihood estimation equetiare of the form:
p=X = VE((Yi)
V= n—pélzﬂxucz‘lxuc : (2.14)
A~ 1 Kn a
Z:n_zglx Y% Xie » (2.15)

where
n+n,+...+n, =n.

The starting value oE can be based on the estimate

S=—33(x, - X Jx, -X)).

The form of the obtained classifier is presentethenfollowing theorem.

Theorem 3 The classifier based on K training samples of sizesy,..., Nk
from the respective classes has the form

d,(x)=arg max3,,(x),

1<i<K

where

1

5'.2(x):x'(\7"1Di"1 i—Ex'(V‘l Di‘l)x +In 7z (2.16)

is the linear classification functionX, is given by (2.13),7t =n/n,

n=m+n,+...+ ng, and whereV and X are obtained by solving simultane-
ously and iteratively the equations (2.14) and %2.1
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3. A mixed effects MANOVA model

Consider a mixed effects MANOVA model (similar tbet split-plot design
model of the univariate analysis of the usual reggbaneasures data) with the
effects of the subjects within a class being randdhen the MANOVA table
(which is similar to the ANOVA table for the spptet design model) can be
given as in Table 1 (Naik and Rao, 2001).

Table 1. MANOVA table for mixed effects model

Source df SS and CP Distribution undeyr H
Between Groups
Groups K-1 Q: WK -1,2)
Individuals n—K Q: Wy(n-K )
Within Groups
Time T-1 Qs Wy(T - 1,5)
Time x Groups T-1)K-1) Q. Wy((T-1)K-1),2)
Error T-1(n-K Qs Wy(T-1)(n-K), 2)
Total nT-1 X(lnr = 1 )X’

nT

HereX, thenT x p matrix, is defined as
X = (XyqgreosXygpoeees Xangaoeees Xinr oo Xeng1re++r Xino7)'-

The matrix quadratic form@, — Q; are

I

Q,=TEn,(x, -x )X, -X ) =X'AX,

Q. :Tii()_(ij. _Xi..)()_(ij- _)_(i--)’ =XAX,

i=1j=1



12¢& MIROSEAW KRZYSKO | INNI

Kn T ,
Qs ZZZZ(YU,( X =Xk +Yi..)(7ijk =X =X +7i..) =X'A X

i=1j=1k=1

with the appropriate choice of symmetric matriégs- As of ordernT x nT and
with the usual notations for the sample average MiatricesA; — As can be
easily derived (for example, see Geisser and Gmes#) 1958). The matrix
quadratic form®Q; — Qs are independent of each other and under the approp
ate null hypothesis each has a scale multiple Wishart distribution with ap-
propriate degrees of freedom. See the work of Kl{a862), Arnold (1979),
Reinsel (1982), and Mathew (1989) in this regard.

Suppose we wish to telly; of no class effect. Then the Wilk&' for test-
ing Hoz is (Naik and Rao, 2001)

Q]

/\1: .
Q. +Q,|

(3.2)
We have
_{n -K —1—%(p— K)}In A, ~ X%(x—) approximately,
wheren=n; + n, +...+ nk.
For testingHg,, that there is no time effect, one can use thekSVi\,
which is
Q4

/\2=
Qs +Q|

(3.2)

and the fact that
- [(n ~K)h —1—%(p +1- h)} InA, ~ xg, approximately,  (3.3)

where
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Similarly, for testingHgs, that there is no time and group interaction, the
Wilks’ A'is

o8

/\3=
Q4 +Q|

(3.4)

and the distribution of the test statistic is
—[(n -K)h —%(p +1-(K —1)h)}ln Ny~ )(E(K_l)h approximately. (3.5)

Since in practice&/ is unknown, the degrees of freedom in gieapproxima-
tions of (3.3) and (3.5) are unknown. One needsstanate these so that the
distributions in (3.3) and (3.5) can be utilizedapplications. For estimating

these degrees of freedoms, which are function¥ ef%JV, we simply need

an estimate o¥. One can use the maximum likelihood estimaté/dhat is
obtained by simultaneously solving the equation$4Rand (2.15).

4. Example

Plant material. Studies were conducted dr6-year-old bushes of the black-
currant Ribes nibrumL.) being in the full fruit-bearing phase. They rae
grown in a cultivar trail established in the autuofril996 at the Experimental
Orchard in Dabrowice (near Skierniewice, centralaRd). The field experi-
ment was established in a randomized complete bilesign in 3 replicates
(with 5 plants on every plot). Fourteen genotypesenevaluated, including 8
cultivars with diverse features and originatingnfrdifferent geographical areas
of Europe (Pluta 1994, 1996, Pomologia — annex P@08 6 breeding clones
released at the Institute of Pomology and Flonigek (ISK) in Skierniewice.
The list of studied genotypes, their parentage @nehtries of origin are pre-
sented in Table 2. The studies were carried oli989—-2001.
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Table 2 List of blackcurrant genotypes studied in theezipents, their parentage
and country of origin

No Name of cultivar/ Parentage Country
) breeding clone of Origin

1 Ojebyn unknown Sweden

2 Titania Altajskaja D. x (Consort x Kajaanin Musta) | Sweden

3 Ben Lomond (Consort x Mangus) x (Brodtorp x Jansiynd | Scotland
4 Lentaj Brodtorp x Minaj Szmyriew Russia

5 Sjuta Kijewskaja (Junost x Zoja) x Minaj Szmyriew Ukraine

6 Crereszniewa [B-36-16 X (\.]unost X Zoja)] x [(Minaj Szmyrie Ukraine

x Bietoruskaja Stodkaja)]

7 CzornyjZemczug | Minaj Szmyriew x Brodtorp Russia
8 Sanjuta (Junost x Zoja) x Minaj Szmyriew Ukraine
9 (PC-1) Gofert Gotubka x Fert?di-1 Poland
10 | PC-3 Bietoruskaja Stodkaja x Titania Poland
11 | PC-8 Smuglianka x Westwick Triumf Poland
12 | PC-9 Ojebyn x Titania Poland
13 | PC-20 Ben Lomond x 7/72 Poland
14 | PC-23 Ben Lomond x 7/72 Poland

Measurement and observationsIn each year of evaluation, measure-
ments were performed on 210 plants in the expetinieh genotypes x 15
plants). On every individual plant the followingeasurements and observa-
tions of features were carried out:

Number of one-year-old shoots (per bush)
Number of strigs on one-year-old bush
Number of flowers in raceme

Number of fruits in the strig

Number of fruits on one-year-old shoots
Weight of 100 fruits (g)

. Fruit yield (kg/bush).

Statistical analysis. A justification for using one-way MANOVA for
analysis of data from an experiment carried ot randomized complete block
design (in this experimental design, data are gedrnn a two-way classifica-
tion with one observation in subclasses) is the¢ tiaat the effects of blocks in
the corresponding ANOVA model were not significkatmost traits. To inves-
tigate the discriminating power of individual feeda sequentially, quadratic
and linear classifiers were used. First the misdii@ation errors were found for
individual characteristics using the quadratic sifésr (2.13). Then the charac-
teristic with the lowest misclassification errorssaugmented with further char-
acteristics. The pair of characteristics with thevést misclassification error
was augmented with other characteristics, and so on

Nouohs~wbpE
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It turned out that the optimal subset is a subkeharacteristics (7, 6, 2, 5,
3, 4) for which the misclassification error is efued.29%.

Augmenting this subset with characteristic numbeércteases the misclas-
sification error. If we use the linear classifi@.16), the optimal subset is a
subset of characteristics (7, 6, 2, 5, 2). In taise, the misclassification error is
equal to 6.67%.

30 T T T T T T T T
20F O34 4
o2
101 5 -
14
013
{] - \ I ,l - 8 -
10
10+ 09 4 o7 4
212
20 6 7
| | |

_3 1 1 1 1 1
-120 -100 -80 -60 -40 -20 0 20 40 60

Fig. 1. Plotted values of the first two principal compnotssfor the mean of 14 genotypes

Let us now consider the hypothesig; l8f the non-differentiation of 14
genotypes of blackcurrants with respect to the Sepked characteristics. The
value of the statistic given in (3.1)As = 0.0091. Then the test statistic value is
equal to 937.5464. Comparing this wjth,(0.05) = 114.2679, we clearly reject
Ho1. This means that the tested genotypes differ faigmitly in terms of at least
one characteristic.

Another hypothesis that we want to verify is thepdthesis b, that there
is no time effect. The value of the statistic giver(3.2) isA\, = 0.0952. Then
the test statistic value is equal to 9852.7594. @aing this withx?4(0.05) =
22.3620, we clearly rejectol This means that during the observation years, the
characteristics changed their values (at least one)
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The hypothesis K says that there is no time and genotype intenactio
this case the value of the statistic given in (3s4)\; = 0.0395. Then the test
statistic value is equal to 1207.2. Comparing thih X°17¢(0.05) = 201.4234,
we clearly reject k.

Plotted values of the first two principal comporsegiven by Degygowski
and Krzyko (2009) for the mean of 14 genotypes are showsigare 1.
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ANALIZA DANYCH WIELOWYMIAROWYCH
POCHODZACYCH Z POWTARZANYCH POMIAROW
NA TYCH SAMYCH JEDNOSTKACH

Streszczenie

W artykule tym zaproponowano nowe klasyfikatorydime i kwadratowe skonstruowane na
podstawie danych wielowymiarowych pochadgch z powtarzanych pomiaréw (danych podwoj-
nie wielowymiarowych). Rozpatrywany jest rowhimodel mieszany wielowymiarowej analizy
wariancji. Jaké¢ rozpatrywanych wielowymiarowych metod statystyaznyest weryfikowana na
danych pochodcych z wieloletniego daviadczenia z czagporzeczk.

Stowa kluczowe klasyfikatory, dane pochodze z powtarzanych pomiaréw (dane podwdjnie
wielowymiarowe), macierze kowariancji o struktuilczynu Kroneckera, model mieszany wie-
lowymiarowej analizy warianciji.

Klasyfikacja AMS 201Q 62H30, 62H15, 62H12, 62J10



