PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2019 | 41 | 04 |

Tytuł artykułu

Use of fluorescent reporter genes in olive (Olea europaea L.) transformation

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Fluorescent proteins (FPs) can be used for different purposes in plant transformation studies such as the evaluation and improvement of transformation parameters or the isolation of transgenic cells in the absence of selective agents. In this research, the applicability of green (GFP) and red (DsRed) fluorescent proteins in olive transformation has been investigated. Olive embryogenic callus was transformed with Agrobacterium tumefaciens AGL1 strain carrying pXK7FNF2 (harbouring the gfp gene), pXK7RNR2 (DsRed), or pXK7S*NF2 (gfp and β-glucuronidase) binary plasmids. After 3 months of selection in the presence of paromomycin, several resistant calli were recovered for each construct, obtaining transformation rates in the range of 2–8%. The expression of FPs was studied during the different stages of olive plant regeneration using epi-fluorescence and confocal laser scanning microscopy. GFP from pXK7SN*F2 plasmid could be easily detected in olive somatic embryos (SE) during proliferation whereas SE transformed with pXK7FNF2 showed weak GFP signal. After embryo conversion, plants transformed with both vectors were analysed, but GFP could be detected neither in leaves nor in roots. By contrast, DsRed was highly expressed in SE and could also be visualized in leaf and root tissues of regenerated plants using confocal laser microscopy and epi-fluorescence zoom microscope, respectively. In addition, pXK7RNR2 was used to transform a different olive embryogenic line, detecting DsRed expression in SE transformed from this genotype. These results show that FPs can be a useful tool in genetic transformation of olive embryogenic cells, being DsRed gene more useful than gfp for this purpose.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

41

Numer

04

Opis fizyczny

Article 49 [11p.], fig.,ref.

Twórcy

autor
  • Rothamsted Research, Plant Biology and Crop Science Department, Harpenden, Hertfordshire AL5 2JQ, U.K.
  • Departamento de Biología Vegetal, Instituto de Hortofruticultura Subtropical y Mediterranea “La Mayora”, IHSM‑UMA‑CSIC, Universidad de Málaga, 29071 Málaga, Spain
autor
  • Departamento de Biología Vegetal, Instituto de Hortofruticultura Subtropical y Mediterranea “La Mayora”, IHSM‑UMA‑CSIC, Universidad de Málaga, 29071 Málaga, Spain
autor
  • Departamento de Biología Vegetal, Instituto de Hortofruticultura Subtropical y Mediterranea “La Mayora”, IHSM‑UMA‑CSIC, Universidad de Málaga, 29071 Málaga, Spain
  • Departamento de Biología Vegetal, Instituto de Hortofruticultura Subtropical y Mediterranea “La Mayora”, IHSM‑UMA‑CSIC, Universidad de Málaga, 29071 Málaga, Spain

Bibliografia

  • Álvarez R, Alonso P, Cortizo M, Celestino C, Hernández I, Toribio M, Ordás RJ (2004) Genetic transformation of selected mature cork oak (Quercus suber L.) trees. Plant Cell Rep 23:218–223
  • Bevis BJ, Glick BS (2002) Rapidly maturing variants of the Discosoma red fluorescent protein (DsRed). Nat Biotechnol 20(1):83–87. https://doi.org/10.1038/nbt0102-83
  • Bhaskar PB, Venkateshwaran M, Wu L, Ané J-M, Jiang J (2009) Agrobacterium-mediated transient gene expression and silencing: a rapid tool for functional gene assay in potato. PLoS One 4(6):e5812. https://doi.org/10.1371/journal.pone.0005812
  • Buenrostro-Nava M, Ling P (2006) Comparative analysis of 35S and lectin promoters in transgenic soybean tissue using an automated image acquisition system and image analysis. Plant Cell Rep 25:920–926
  • Cañas L, Benbadis A (1988) In vitro plant regeneration from cotyledon fragments of the olive tree (Olea europaea L.). Plant Sci 54:65–74
  • Cerezo S, Mercado JA, Pliego-Alfaro F (2011) An efficient regeneration system via somatic embryogenesis in olive. Plant Cell Tissue Organ Cult 106(2):337–344. https://doi.org/10.1007/s11240-011-9926-6
  • Clavero-Ramírez I, Pliego-Alfaro F (1990) Germinación in vitro de embriones maduros de olivo (Olea europaea). Actas de Horticultura 1:512–516
  • Corredoira E, Valladares S, Allona I, Aragoncillo C, Vieitez AM, Ballester A (2012) Genetic transformation of European chestnut somatic embryos with a native thaumatin-like protein (CsTL1) gene isolated from Castanea sativa seeds. Tree Physiol 32:1389–1402
  • Duque AS, de Sousa Araújo S, Cordeiro MA, Santos DM, Fevereiro MP (2007) Use of fused gfp and gus reporters for the recovery of transformed Medicago truncatula somatic embryos without selective pressure. Plant Cell Tissue Organ Cult 90(3):325–330
  • Grebenok R, Lambert G (1997) Characterization of the targeted nuclear accumulation of GFP within the cells of transgenic plants. Plant J 12:685–696
  • Hofgen R, Willmitzer L (1988) Storage of competent cells for Agrobacterium transformation. Nucleic Acids Res 16(20):9877–9877. https://doi.org/10.1093/nar/16.20.9877
  • Hraška M, Rakouský S, Čurn V (2006) Green fluorescent protein as a vital marker for non-destructive detection of transformation events in transgenic plants. Plant Cell Tissue Organ Cult 86(3):303–318. https://doi.org/10.1007/s11240-006-9131-1
  • Jach G, Binot E, Frings S, Luxa K, Schell J (2001) Use of red fluorescent protein from Discosoma sp. (dsRED) as a reporter for plant gene expression. Plant J 28(4):483–491. https://doi.org/10.1046/j.1365-313X.2001.01153.x
  • Jin S, Liu G, Zhu H, Yang X, Zhang X (2012) Transformation of Upland cotton (Gossypium hirsutum L.) with gfp gene as a visual marker. J Integr Agric 11:910–919
  • Karimi M, Bleys A, Vanderhaeghen R, Hilson P (2007) Building blocks for plant gene assembly. Plant Physiol 145(4):1183–1191. https://doi.org/10.1104/pp.107.110411
  • Khan T, Reddy VS, Leelavathi S (2010) High-frequency regeneration via somatic embryogenesis of an elite recalcitrant cotton genotype (Gossypium hirsutum L.) and efficient Agrobacterium-mediated transformation. Plant Cell Tissue Organ Cult 101(3):323–330. https://doi.org/10.1007/s11240-010-9691-y
  • Kim C, Chung J, Park S, Burrell A, Kamo K, Byrne D (2004) Agrobacterium tumefaciens-mediated transformation of Rosa hybrida using the green fluorescent protein (GFP) gene. Plant Cell Tissue Organ Cult 78(2):107–111
  • Kole C (ed) (2007) Genome mapping and molecular breeding in plants. Springer, Heidelberg
  • Lambardi M, Benelli C, Amorosi S, Branca C, Caricato G, Rugini E (1999) Microprojectlie-DNA delivery in somatic embryos of olive (Olea europaea L.). Acta Hortic 474:505–509
  • Lazo GR, Stein PA, Ludwig RA (1991) A DNA transformation–competent Arabidopsis genomic library in Agrobacterium. Biotechnology 9(10):963–967. https://doi.org/10.1038/nbt1091-963
  • Leclercq J, Lardet L, Martin F, Chapuset T (2010) The green fluorescent protein as an efficient selection marker for Agrobacterium tumefaciens-mediated transformation in Hevea brasiliensis (Müll. Arg). Plant Cell Rep 29:513–522
  • Li ZT, Jayasankar S, Gray D (2001) Expression of a bifunctional green fluorescent protein (GFP) fusion marker under the control of three constitutive promoters and enhanced derivatives in transgenic grape (Vitis vinifera). Plant Sci 160(5):877–887
  • Li J, Brunner AM, Meilan R, Strauss SH (2009) Stability of transgenes in tress: expression of two reporter genes in poplar over three field seasons. Tree Physiol 29:299–312
  • Matz MV, Fradkov AF, Labas YA, Savitsky AP, Zaraisky AG, Markelov ML, Lukyanov SA (1999) Fluorescent proteins from nonbioluminescent Anthozoa species. Nat Biotechnol 17(10):969–973. https://doi.org/10.1038/13657
  • Maximova SN, Miller C, Antúnez de Mayolo G, Pishak S, Young A, Guiltinan MJ (2003) Stable transformation of Theobroma cacao L. and influence of matrix attachment regions on GFP expression. Plant Cell Rep 21(9):872–883. https://doi.org/10.1007/s00299-003-0596-7
  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497
  • Mußmann V, Serek M (2011) Selection of transgenic Petunia plants using the green fluorescent protein (GFP). Plant Cell Tissue Organ Cult 107(3):483–492. https://doi.org/10.1007/s11240-011-9998-3
  • Nishizawa K, Kita Y, Kitayama M, Ishimoto M (2006) A red fluorescent protein, DsRed2, as a visual reporter for transient expression and stable transformation in soybean. Plant Cell Rep 25(12):1355–1361. https://doi.org/10.1007/s00299-006-0210-x
  • Orinos T, Mitrakos K (1991) Rhizogenesis and somatic embryogenesis in calli from wild olive (Olea europaea var. sylvestris (Miller) Lehr) mature zygotic embryos. Plant Cell Tissue Organ Cult 27(2):183–187. https://doi.org/10.1007/BF00041288
  • Palomo-Ríos E, Cerezo S, Mercado JA, Pliego-Alfaro F (2016) Agrobacterium-mediated transformation of avocado (Persea americana Mill.) somatic embryos with fluorescent marker genes and optimization of transgenic plant recovery. Plant Cell Tissue Organ Cult 128(2):447–455
  • Pérez-Barranco G, Torreblanca R, Padilla IMG, Sánchez-Romero C, Pliego-Alfaro F, Mercado JA (2009) Studies on genetic transformation of olive (Olea europaea L.) somatic embryos: I. Evaluation of different aminoglycoside antibiotics for nptII selection; II. Transient transformation via particle bombardment. Plant Cell Tissue Organ Cult 97(3):243–251. https://doi.org/10.1007/s11240-009-9520-3
  • Pérez-Jiménez F, Ruano J, Perez Martinez P, Lopez Segura F, López-Miranda J (2007) The influence of olive oil on human health: not a question of fat alone. Mol Nutr Food Res 51(10):1199–1208
  • Ribas AF, Dechamp E, Champion A, Bertrand B, Combes M-C, Verdeil J-L, Lapeyre F, Lashermes P, Etienne H (2011) Agrobacterium-mediated genetic transformation of Coffea arabica (L.) is greatly enhanced by using established embryogenic callus cultures. BMC Plant Biol 11(1):92–117
  • Rugini E, Caricato G (1995) Somatic embryogenesis and plant recovery from mature tissues of olive cultivars (Olea europaea L.) “Canino” and “Moraiolo”. Plant Cell Rep 14:257–260
  • Stewart CN (2006) Go with the glow: fluorescent proteins to light transgenic organisms. Trends Biotechnol 24:155–162
  • Torreblanca R, Cerezo S, Palomo-Ríos E, Mercado JA, Pliego-Alfaro F (2010) Development of a high throughput system for genetic transformation of olive (Olea europaea L.) plants. Plant Cell Tissue Organ Cult 103(1):61–69. https://doi.org/10.1007/s11240-010-9754-0
  • Verkhusha V, Kuznetsova I, Stepanenko O, Zaraisky AG, Shavlovsky M, Turoverov K, Uversky V (2003) High stability of Discosoma DsRed as compared to Aequorea EGFP. Biochem 42:7879–7884
  • Vidoy-Mercado I, Imbroda-Solano I, Pliego-Alfaro F, Barceló-Muñoz A (2012) Differential in vitro behaviour of the Spanish olive (Olea europaea L.) cultivars “Arbequina” and “Picual”. Acta Hort 949:27–30
  • Wenck A, Pugieux C, Turner M, Dunn M, Stacy C (2003) Reef-coral proteins as visual, non-destructive reporters for plant transformation. Plant Cell Rep 22:244–251
  • Zhang B, Rapolu M, Huang L, Su WW (2011) Coordinate expression of multiple proteins in plant cells by exploiting endogenous kex2p-like protease activity. Plant Biotechnol J 9(9):970–981. https://doi.org/10.1111/j.1467-7652.2011.00607.x
  • Zhou X, Chandrasekharan M (2004) High rooting frequency and functional analysis of GUS and GFP expression in transgenic Medicago truncatula A17. New Phytol 162:813–822
  • Zhou X, Carranco R, Vitha S, Hall TC (2005) The dark side of green fluorescent protein. New Phytol 168(2):313–322. https://doi.org/10.1111/j.1469-8137.2005.01489.x

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-41d9a466-3c7e-4c36-9c4b-67eae8cc27af
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.