PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2013 | 22 | 5 |

Tytuł artykułu

The application of nanoscale materials in groundwater remediation

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
This review article summarizes the current situation in the application of nanotechnology to contaminated site remediation. Many types of nanomaterials and nanoparticles have been produced since their discovery. As remediation tools, carbon-based nanomaterial (CNM) sorbents and nanoparticles of zero-valent iron (nZVI) are at the forefront of scientific interest. The most often used CNM sorbents are multiwalled and singlewalled carbon nanotubes (MWCNTs and SWCNTs), which are only examined under laboratory conditions. nZVI has already been applied to real contaminated sites as an in situ technology through direct injection into aquifers. CNM sorbents can remove both organic contaminants – aliphatic and mono and polycyclic aromatic hydrocarbons and their derivatives, plus inorganic contaminants – such as divalent metal ions (Cd²⁺, Pb²⁺, Zn²⁺, Ni²⁺, Cu²⁺) from polluted water. Zero-valent iron nanoparticles have been used for the removal of TCE, VOC, nitrates, and uranium. This review shows that these nanomaterials are a promising solution in the field of groundwater remediation, but there are also many unanswered questions regarding the environmental risks of nanoscale materials, which are outlined as well.

Wydawca

-

Rocznik

Tom

22

Numer

5

Opis fizyczny

p.1401-1410,fig.,ref.

Twórcy

  • Institute of Clean Technologies for Mining and Utilization of Raw Materials for Energy Use, VSB - Technical University of Ostrava, 17. listopadu 15, 708 33 Ostrava, Czech Republic
autor
  • Nanotechnology Centre, VSB - Technical University of Ostrava, 17. listopadu 15, 708 33 Ostrava, Czech Republic
autor
  • Institute of Clean Technologies for Mining and Utilization of Raw Materials for Energy Use, VSB - Technical University of Ostrava, 17. listopadu 15, 708 33 Ostrava, Czech Republic

Bibliografia

  • 1. BOULDING J. R., GINN J. S. Practical handbook of soil, vadose zone, and ground-water contamination: assessment, prevention, and remediation. Lewis Pub., Boca Raton, Fla.; London, 2004.
  • 2. PALMER C. M. Principles of contaminant hydrogeology. Lewis Publishers, Chelsea, Mich, 1992.
  • 3. TRATNYEK P. G., JOHNSON R. L. Nanotechnologies for environmental cleanup. Nano Today 1, 44, 2006.
  • 4. NOWACK B., BUCHELI T. D. Occurrence, behavior and effects of nanoparticles in the environment. Environ. Pollut. 150, 5, 2007
  • 5. ČERNÍK M., KVAPIL P., ŠURÁNOVÁ R. Current experiences and future perspectives of nanoscale zero-valent iron application in the Czech Republic. Ent magazíne, 2010.
  • 6. KLIMKOVA S., CERNIK M., LACINOVA L., FILIP J., JANCIK D., ZBORIL R. Zero-valent iron nanoparticles in treatment of acid mine water from in situ uranium leaching. Chemosphere 82, 1178, 2011.
  • 7. U.S. EPA Office of Superfund Remediation and Technology Innovation. Emerging Nanotechnologies for Site Remediation and Wastewater Treatment, 2005.
  • 8. U.S. EPA Office of Superfund Remediation and Technology Innovation. Nanotechnology for Site Remediation Fact Sheet, 2008.
  • 9. OTTO M., FLOYD M., BAJPAI S. Nanotechnology for site remediation. Remediation 19, 99, 2008.
  • 10. MAUTER M. S., ELIMELECH M. Environmental applications of carbon-based nanomaterials. Environ. Sci. Technol 42, 5843, 2008.
  • 11. PYRZYNSKA K., BYSTRZEJEWSKI M. Comparative study of heavy metal ions sorption onto activated carbon, carbon nanotubes, and carbon encapsulated magnetic nanoparticles. Colloid. Surface. A. 362, 102, 2010.
  • 12. LU C., LIU C., RAO G. P. Comparisons of sorbent cost for the removal of Ni²⁺ from aqueous solution by carbon nanotubes and granular activated carbon. J. Hazard. Mater. 151, 239, 2008.
  • 13. ION A. C., ION I., CULETU A. Carbon-based nanomaterials. Environmental applications, In Series in Micro and Nanoengineering, vol. 19, Nanomaterials and nanostructures for various applications. Ed. Academiei Romane, 31-57, 2012.
  • 14. SAVAGE N., DIALLO M. S. Nanomaterials and water purification: Opportunities and challenges. J. Nanopart. Res. 7, 331, 2005.
  • 15. SAE-KHOW O., GETHARD K., MITRA S. Enhanced environmental remediation and dealination using carbon nanotubes immobilized porous polymeric membranes. Abstr. Pap. Am. Chem. S. 241, 2011.
  • 16. HSIEH S. H., HORNG J. J. Adsorption behavior of heavy metal ions by carbon nanotubes grown on microsized Al₂O₃ particles. J. Univ. Sci. Technol. B. 14, 77, 2007.
  • 17. ION A. C., ION I., CULETU A. Lead adsorption onto exfoliated graphitic nanoplatelets in aqueous solutions. Mater. Sci. Eng. B-Adv 176, 504, 2011.
  • 18. BYSTRZEJEWSKI M., PYRZYNSKA K., HUCZKO A., LANGE H. Carbon-encapsulated magnetic nanoparticles as separable and mobile sorbents of heavy metal ions from aqueous solutions. Carbon 47, 1201, 2009.
  • 19. KABBASHI N. A., ATIEH M. A., AL-MAMUN A., MIRGHAMI M. E S, ALAM MD Z, YAHYA N. Kinetic adsorption of application of carbon nanotubes for Pb(II) removal from aqueous solution. J. Environ. Sci. 21, 539, 2009.
  • 20. LI Y-H., ZHU Y., ZHAO Y., WU D., LUAN Z. Different morphologies of carbon nanotubes effect on the lead removal from aqueous solution. Diam. Relat. Mater. 15, 90, 2006.
  • 21. LI Y-H., WANG S., LUAN Z., DING J., XU C., WU D. Adsorption of cadmium(II) from aqueous solution by surface oxidized carbon nanotubes. Carbon 41, 1057, 2003.
  • 22. LI Y-H., DI Z., DING J., WU D., LUAN Z., ZHU Y. Adsorption thermodynamic, kinetic and desorption studies of Pb²⁺ on carbon nanotubes. Water Res 39, 605, 2005.
  • 23. LU C., CHIU H. Adsorption of zinc(II) from water with purified carbon nanotubes. Chem. Eng. Sci. 61, 1138, 2006.
  • 24. STAFIEJ A., PYRZYNSKA K. Adsorption of heavy metal ions with carbon nanotubes. Sep. Purif. Technol. 58, 49, 2007.
  • 25. WANG H., ZHOU A., PENG F., YU H., YANG J. Mechanism study on adsorption of acidified multiwalled carbon nanotubes to Pb(II). J. Colloid Interf. Sci. 316, 277, 2007.
  • 26. YANG S., LI J., SHAO D., HU J., WANG X. Adsorption of Ni(II) on oxidized multi-walled carbon nanotubes: Effect of contact time, pH, foreign ions and PAA. J. Hazard. Mater. 166, 109, 2009.
  • 27. RUPARELIA J. P., DUTTAGUPTA S. P., CHATTERJEE A. K., MUKHERJI S. Potential of carbon nanomaterials for removal of heavy metals from water. Desalination 232, 145, 2008.
  • 28. KUO C-Y. Water purification of removal aqueous copper (II) by as-grown and modified multi-walled carbon nanotubes. Desalination 249, 781, 2009.
  • 29. SÁNCHEZ A., RECILLAS S., FONT X., CASALS E., GONZALEZ E., PUNTES V. Ecotoxicity of, and remediation with, engineered inorganic nanoparticles in the environment. Trac-Trend. Anal. Chem. 30, 507, 2011.
  • 30. GOTOVAC S., YANG C. M., HATTORI Y., TAKAHASHI K., KANOH H., KANEKO K. Adsorption of polyaromatic hydrocarbons on single wall carbon nanotubes of different functionalities and diameters. J. Colloid Interf. Sci. 314, 18, 2007.
  • 31. RAO G. P., LU C., SU F. Sorption of divalent metal ions from aqueous solution by carbon nanotubes: A review. Sep. Purif. Technol. 58, 224, 2007.
  • 32. HU Z. J., CUI Y., LIU S., YUAN Y., GAO H. W. Optimization of ethylenediamine-grafted multiwalled carbon nanotubes for solid-phase extraction of lead cations. Environ. Sci. Pollut. R. 19, 1237, 2012.
  • 33. YAVUZ C. T., MAYO J. T., YU W. W., PRAKASH A., FALKNER J. C., YEAN S., CONG L., SHIPLEY H. J., KAN A., TOMSON M., NATELSON D., COLVIN V. L. Low-Field Magnetic Separation of Monodisperse Fe₃O₄ Nanocrystals. Science 314, 964, 2006.
  • 34. SHIPLEY H. J., YEAN S., KAN A. T., TOMSON M. B. A sorption kinetics model for arsenic adsorption to magnetite nanoparticles. Environ. Sci. Pollut. R. 17, 1053, 2010.
  • 35. YAVUZ C. T, MAYO J. T., SUCHECKI C., WANG J., ELLSWORTH A. Z., D’COUTO H., QUEVEDO E., PRAKASH A., GONZALEZ L., NGUYEN C., KELTY C., COLVIN V. L. Pollution magnet: nano-magnetite for arsenic removal from drinking water. Environ. Geochem. Hlth. 32, 327, 2010.
  • 36. ENGATES K. E., SHIPLEY H. J. Adsorption of Pb, Cd, Cu, Zn, and Ni to titanium dioxide nanoparticles: effect of particle size, solid concentration, and exhaustion. Environ. Sci. Pollut. R. 18, 386, 2011.
  • 37. ALQUDAMI A., ALHEMIARY N.A., MUNASSAR S. Removal of Pb(II) and Cd(II) ions from water by Fe and Ag nanoparticles prepared using electro-exploding wire technique. Environ. Sci. Pollut. R., 19, (7), 2832, 2011.
  • 38. LISHA K. P., ANSHUP, PRADEEP T. Towards a practical solution for removing inorganic mercury from drinking water using gold nanoparticles. Gold Bull. 42, 144, 2009.
  • 39. PENG X., LI Y., LUAN Z., DI Z., WANG H., TIAN B., JIA Z. Adsorption of 1,2-dichlorobenzene from water to carbon nanotubes. Chem. Phys. Lett. 376, 154, 2003.
  • 40. YANG K., ZHU L., XING B. Adsorption of polycyclic aromatic hydrocarbons by carbon nanomaterials. Environ. Sci. Technol. 40, 1855, 2006.
  • 41. LU C., CHUNG Y-L., CHANG K-F. Adsorption of trihalomethanes from water with carbon nanotubes. Water Res 39, 1183, 2005.
  • 42. YANG K., WANG X., ZHU L., XING B. Competitive sorption of pyrene, phenanthrene, and naphthalene on multiwalled carbon nanotubes. Environ. Sci. Technol. 40, 5804, 2006.
  • 43. CHENG X. K., KAN A.T., TOMSON M. B. Naphthalene adsorption and desorption from Aqueous C-60 fullerene. J. Chem. Eng. Data. 49, 675, 2004.
  • 44. SHAO D., SHENG G., CHEN C., WANG X., NAGATSU M. Removal of polychlorinated biphenyls from aqueous solutions using beta-cyclodextrin grafted multiwalled carbon nanotubes. Chemosphere 79, 679, 2010.
  • 45. WANG X., LIU Y., TAO S., XING B. Relative importance of multiple mechanisms in sorption of organic compounds by multiwalled carbon nanotubes. Carbon 48, 3721, 2010.
  • 46. CHIN C-J. M., SHIH M-W, TSAI H-J. Adsorption of nonpolar benzene derivatives on single-walled carbon nanotubes. Appl. Surf. Sci. 256, 6035, 2010.
  • 47. SU F., LU C., HU S. Adsorption of benzene, toluene, ethylbenzene and p-xylene by NaOCl-oxidized carbon nanotubes. Colloid. Surface. A 353, 83, 2010.
  • 48. GOTOVAC S., HATTORI Y., NOGUCHI D., MIYAMOTO J., KANAMARU M., UTSUMI S., KANOH H., KANEKO K. Phenanthrene adsorption from solution on single wall carbon nanotubes. J. Phys. Chem. B 110, 16219, 2006.
  • 49. CHENG X. K., KAN A.T., TOMSON M.B. Uptake and sequestration of naphthalene and 1,2-dichlorobenzene by C60. J. Nanopart. Res. 7, 555, 2005.
  • 50. FAN Z. J, YAN J., NING G.Q., WEI T., QIAN W. Z., ZHANG S. J., ZHENG C., ZHANG Q., WEI F. Oil sorption and recovery by using vertically aligned carbon nanotubes. Carbon 48, 4197, 2010.
  • 51. MOURA F. C. C., LAGO R. M. Catalytic growth of carbon nanotubes and nanofibers on vermiculite to produce floatable hydrophobic “nanosponges” for oil spill remediation. Appl. Catal. B-Environ. 90, 436, 2009.
  • 52. Li S., NIU Z., Zhong X., Yang H., LEI Y., ZHANG F., HU W., DONG Z., JIN J., MA J. Fabrication of magnetic Ni nanoparticles functionalized water-soluble grapheme sheets nanocomposites as sorbent for aromatic compounds removal. J. Hazard. Mater. 229-230, 42, 2012.
  • 53. ION A.C., ALPATOVA, A., ION I., CULETU, A. Study on phenol adsorption from aqueous solutions on exfoliated graphitic nanoplatelets. Mater. Sci. Eng. B, 176, (7), 588, 2011.
  • 54. BIGG T., JUDD S. J. Zero-valent iron for water treatment. Environ. Technol. 21, 661, 2000.
  • 55. CANTRELL K. J., KAPLAN D. I., WIETSMA T. W. ZeroValent Iron for the in-Situ Remediation of Selected Metals in Groundwater. J. Hazard. Mater. 42, 201, 1995.
  • 56. FARRELL J., BOSTICK W. D., JARABEK R. J., FIEDOR J. N. Uranium removal from ground water using zero valent iron media. Ground Water 37, 618, 1999.
  • 57. MUELLER N. C., BRAUN J., BRUNS J., CERNIK M., RISSING P., RICKERBY D., NOWACK B. Application of nanoscale zero valent iron (NZVI) for groundwater remediation in Europe. Environ. Sci. Pollut. R. 19, 550, 2012.
  • 58. GRIEGER K. D., FJORDBOGE A., HARTMANN N. B., ERIKSSON E., BJERG P. L., BAUN A. Environmental benefits and risks of zero-valent iron nanoparticles (nZVI) for in situ remediation: Risk mitigation or trade-off? J. Contam. Hydrol. 118, 165, 2010.
  • 59. LINDSAY M. B. J., PTACEK C. J., BLOWES D. W., GOULD W. D. Zero-valent iron and organic carbon mixtures for remediation of acid mine drainage: Batch experiments. Appl. Geochem. 23, 2214, 2008.
  • 60. ZHANG W-X. Nanoscale iron particles for environmental remediation: An overview. J. Nanopart. Res. 5, 323, 2003.
  • 61. CRANE R. A., DICKINSON M., POPESCU I. C., SCOTT T. B. Magnetite and zero-valent iron nanoparticles for the remediation of uranium contaminated environmental water. Water Res. 45, 2931, 2011.
  • 62. DICKINSON M., SCOTT T. B. The application of zerovalent iron nanoparticles for the remediation of a uranium-contaminated waste effluent. J. Hazard. Mater. 178, 171, 2010.
  • 63. MACÉ C., DESROCHER S., GHEORGHIU F., KANE A., PUPEZA M., CERNIK M., KVAPIL P., VENKATAKRISHNAN R., ZHANG W-X. Nanotechnology and groundwater remediation: A step forward in technology understanding. Remediation 16, 23, 2006.
  • 64. YANG G. C. C., CHANG Y-I. Integration of emulsified nanoiron injection with the electrokinetic process for remediation of trichloroethylene in saturated soil. Sep. Purif. Technol. 79, 278, 2011.
  • 65. BEZBARUAH A. N., KRAJANGPAN S., CHISHOLM B. J., KHAN E., BERMUDEZ J. J. E. Entrapment of iron nanoparticles in calcium alginate beads for groundwater remediation applications. J. Hazard. Mater. 166, 1339, 2009.
  • 66. ENGEMANN C. Regulation, risk and the global nanotechnology workplace. International conference on safe production and use of nanomaterials, France, 2012.
  • 67. TIEDE K., BOXALL A. B. A., TEAR S. P., LEWIS J., DAVID H., HASSELLOV M. Detection and characterization of engineered nanoparticles in food and the environment. Food. Addit. Contam. A 25, 795, 2008.
  • 68. WARHEIT D. B., SAYES C. M., REED K. L., SWAIN K. A. Health effects related to nanoparticle exposures: Environmental, health and safety considerations for assessing hazards and risks. Pharmacol. Therapeut. 120, 35, 2008.
  • 69. KAHRU A., DUBOURGUIER H. C. From ecotoxicology to nanoecotoxicology. Toxicology 269, 105, 2010.
  • 70. KLAINE S. J., ALVAREZ P. J. J., BATLEY G. E., FERNANDES T. F., HANDY R. D., LYON D. Y., MAHENDRA S., MCLAUGHLIN M. J., LEAD J. R. Nanomaterials in the environment: Behavior, fate, bioavailability, and effects. Environ. Toxicol. Chem. 27, 1825, 2008.
  • 71. XU Z., LIU X-W., MA Y-S., GAO H-W. Interaction of nano-TiO₂ with lysozyme: insights into the enzyme toxicity of nanosized particles. Environ. Sci. Pollut. R. 17, 798, 2010.
  • 72. EUROPEAN COMMISSION. Second Regulatory Review on Nanomaterials, 2012.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-419e6892-d45d-4c53-8e0f-5ca8e3b96b24
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.