PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2015 | 09 | 4 |

Tytuł artykułu

Filter cake impact on the textile filtersfor wastewater treatment hydraulic capacity

Warianty tytułu

PL
Wpływ placka filtracyjnego na wydatek filtrów włókninowych do oczyszczania ścieków

Języki publikacji

EN

Abstrakty

EN
The aim of the study was to identify the filter cake hydraulic conductivity and its impact on the hydraulic capacity of textile filters for wastewater treatment. The study was carried out using septic tank effluent filtered on four types of filters of different thickness (0.9, 1.8, 3.6 and 7.2 mm). The dry biomass content was 13.45–36.7 mg TS per 1 cm2 at organic loading rate of 0.04–0.07 mg BOD5 per 1 mg d.m. per day. The filter cake dry mass was related to filter thick-ness. The dry mass content of filter cake was about 9.7–19.1% of whole filter cross-sectional profile TS content in the long-term experiment. The filter cake had a significant impact on the hydraulic capacity reduction due to its high density and small porosity. The volumetric density of filter cake biomass was almost twice as high as the volumetric density of biomass inside the textile filter. The filter hydraulic conductivity of a one-layer filter without filter cake was over four orders of magnitude higher than the hydraulic conductivity of a one-layer filter with filter cake formed during the short-term experiment.
PL
Celem badań było określenie współczynnika filtracji placka filtracyjnego oraz jego wpływu na wydatek hydrauliczny filtrów włókninowych oczyszczających ścieki. Badania prze-prowadzono z użyciem ścieków odpływających z osadnika gnilnego, filtrowanych przez filtry o czterech grubościach (0,9, 1,8, 3,6 i 7,2 mm). Zawartość suchej masy wynosiła 13,45–36,7 mg zawiesiny ogólnej w 1 cm2 dla obciążenia ładunkiem związków organicznych wynoszącego 0,04–0,07 mg BZT5 na 1 mg suchej masy osadu w ciągu doby. Sucha masa placka filtracyjnego była związana z grubością filtra. Zawartość suchej masy placka stanowiła 9,7–19,1% zawartości sub-stancji stałych całego przekroju poprzecznego warstwy filtracyjnej w przypadku testu długoter-minowego. Placek filtracyjny miał istotny wpływ na zmniejszenie wydatku za sprawą swojej dużej gęstości i małej porowatości. Gęstość objętościowa biomasy placka filtracyjnego była prawie dwukrotnie większa od gęstości objętościowej biomasy wewnątrz włókniny. Współczyn-nik filtracji jednowarstwowego filtra bez placka filtracyjnego, badanego w ramach testu krótko-terminowego, był o ponad cztery rzędy wielkości większy od współczynnika filtracji tego filtra pokrytego plackiem filtracyjnym.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

09

Numer

4

Opis fizyczny

http://www.npt.up-poznan.net/pub/art_9_55.pdf

Twórcy

autor
  • Department of Hydraulic and Sanitary Engineering, Poznan University of Life Sciences, Piatkowska 94, 60-649 Poznan, Poland
autor
  • Department of Hydraulic and Sanitary Engineering, Poznan University of Life Sciences, Poznan, Poland

Bibliografia

  • Beach, D., McCray, J., Lowe, K., Siegrist, R. (2005). Temporal changes in hydraulic conductivity of sand porous media biofilters during wastewater infiltration due to biomat formation. J. Hydrol. (Amst.), 311, 230–243.
  • Bérubé, P. R., Lei, E. (2006). The effect of hydrodynamic conditions and system configurations on the permeate flux in a submerged hollow fiber membrane system. J. Membr. Sci., 271, 1–2, 29–37.
  • Bessiere, Y., Fletcher, D. F., Bacchin, P. (2008). Numerical simulation of colloid dead-end filtra-tion: effect of membrane characteristics and operating conditions on matter accumulation. J. Membr. Sci., 313, 1, 52–59.
  • Bouma, J. (1975). Unsaturated flow during soil treatment of STE. J. Environ. Eng., 101, 967–983.
  • Carroll, T. (2001). The effect of cake and fibre properties on flux declines in hollow-fibre micro-filtration membranes. J. Membr. Sci., 189, 2, 167–178.
  • EN ISO 12956:1999. (1999). Geotextiles and geotextile-related products – Determination of the characteristic opening size. Genève, Switzerland: International Organization for Standardiza-tion.
  • EN ISO 9864:2005. (2005). Geosynthetics – Test method for the determination of mass per unit area of geotextiles and geotextile-related products. Genève, Switzerland: International Organ-ization for Standardization.
  • EN ISO 11058:2010. (2010). Geotextiles and geotextile-related products – Determination of water permeability characteristics normal to the plane, without load. Genève, Switzerland: In-ternational Organization for Standardization.
  • Fane, A. G., Fell, C. J. D., Hodgson, P. H., Leslie, G., Marshall, K. C. (1991). Microfiltration of biomass and biofluids: effects of membrane morphology and operating conditions. Filtr. Separ., 28, 5, 332–340, 331.
  • Higdon, J. J. L., Ford, G. D. (1996). Permeability of three-dimensional models of fibrous porous media. J. Fluid Mech., 308, 341–361.
  • Holtz, R. D., Christopher, B. R., Berg, R. R. (1998). Geosynthetic design and construction guide-lines. Report (Grant No. DTFH61-93-C-00120). Woodbury, MN: Berg & Assoc.
  • Hubbe, M. A., Chen, H., Heitmann, J. A. (2009). Permeability reduction phenomena in packed beds, fiber mats, and wet webs of paper exposed to flow of liquids and suspensions: a review. BioResources, 4, 1, 405–451.
  • Hubbe, M. A., Heitmann, J. A. (2007). Review of factors affecting the release of water from cellulosic fibers during paper manufacture. BioResources, 2, 3, 500–533.
  • Hubbe, M. A., Heitmann, J. A., Cole, C. A. (2008). Water release from fractionated stock suspensions. 2. Effects of consistency, flocculants, shear, and order of mixing. TAPPI J., 7, 8, 14–19.
  • Ivnitsky, H., Katz, I., Minz, D., Volvovic, G., Shimoni, E., Kesselman, E., Semiat, R., Dosoretz, C. G. (2007). Bacterial community composition and structure of biofilms developing on nano-filtration membranes applied to wastewater treatment. Water Res., 41, 17, 3924–3935.
  • Kim, A. S., Chen, H., Yuan, R. (2006). EPS biofouling in membrane filtration: an analytic model-ing study. J. Colloid Interface Sci., 303, 243–249.
  • Kropf, F. W., Laak, R., Healey, K. A. (1977). Equilibrium operation of subsurface absorption systems. J. Water Pollut. Control. Fed., 49, 9, 2007–2016.
  • Kruszelnicka, I., Ginter-Kramarczyk, D. (2013). Biofilmowe oczyszczanie. Ochr. Środ., 35, 2, 50–53.
  • Kumar, P., Wei, H. L., Ramarao, B. V. (1996). A model for freeness measurement of papermak-ing suspensions. Chem. Eng. Commun., 152–153, 287–306.
  • Kutay, M. E., Aydilek, A. H. (2005). Filtration performance of two-layer geotextile systems. Geotech. Test. J., 28, 1, 1–13.
  • Law, S. P., Melvin, M. M. A. L., Lamb, A. J. (2001). Visualisation of the establishment of a heterotrophic biofilm within the schmutzdecke of a slow sand filter using scanning electron microscopy. Biofilm J., 6, 1.
  • Le-Clech, P., Chen, V., Fane, T. A. (2006). Fouling in membrane bioreactors used in wastewater treatment. J. Membr. Sci., 284, 1, 17–53.
  • Lee, C. H., Park, P. K., Lee, W. N., Hwang, B. K., Hong, S. H., Yeon, K. M., Oh, H. S., Chang, I. S. (2008). Correlation of biofouling with the bio-cake architecture in an MBR. Desalination, 231, 1–3, 115–123.
  • Li, W., Kiser, C., Richard, Q. (2005). Development of a filter cake permeability test methodo-logy. In: American Filtration and Separations Society, International Topical Conferences and Exposition, Ann Arbor, Michigan, USA, September 19–22 (paper 5, pp. 1–8). Ann Arbor, MI: AFSS.
  • Łomnicki, A. (1999). Wstęp do statystyki dla biologów. Warszawa: Wyd. Nauk. PWN.
  • Meng, F., Chae, S. R., Drews, A., Kraume, M., Shin, H. S., Yang, F. (2009). Recent advances in membrane bioreactors (MBRs): membrane fouling and membrane material. Water Res., 43, 6, 1489–1512.
  • Meng, F., Yang, F. (2007). Fouling mechanisms of deflocculated sludge, normal sludge, and bulking sludge in membrane bioreactor. J. Membr. Sci., 305, 1–2, 48–56.
  • Mourouzidis-Mourouzis, S. A., Karabelas, A. J. (2006). Whey protein fouling of microfiltration ceramic membranes – pressure effects. J. Membr. Sci., 282, 1–2, 124–132.
  • Peter-Varbanets, M., Hammes, F., Vital, M., Pronk, W. (2010). Stabilization of flux during dead- -end ultra-low pressure ultrafiltration. Water Res., 44, 12, 3607–3616.
  • Psoch, C., Schiewer, S. (2008). Long-term flux improvement by air sparging and backflushing for a membrane bioreactor, and modeling permeability decline. Desalination, 230, 1–3, 193–204.
  • Ramesh, A., Lee, D. J., Lai, J. Y. (2007). Membrane biofouling by extracellular polymeric substances or soluble microbial products from membrane bioreactor sludge. Appl. Microbiol. Bi-otechnol., 74, 699–707.
  • Ren, X., Shon, H. K., Jang, N., Lee, Y. G., Bae, M., Lee, J., Cho, K., Kim, I. S. (2010). Novel membrane bioreactor (MBR) coupled with a nonwoven fabric filter for household wastewater treatment. Water Res., 44, 3, 751–760.
  • Santos, A., Bedrikovetsky, P., Fontoura, S. (2008). Analytical micro model for size exclusion: pore blocking and permeability reduction. J. Membr. Sci., 308, 1–2, 115–127.
  • Setlhare, B., Mwiinga, G. (2006). Impact of fabric material on slow sand filtration for small and rural water supply in South Africa. In: Proceedings of the Water Institute of Southern Africa Biennial Conference (WISA 2006), 21–25th May, Durban, South Africa. Durban: WISA.
  • Shimizu, Y., Rokudai, M., Tohya, S., Kayawake, E., Yazawa, T., Tanaka, H., Eguchi, K. (1989). Filtration characteristics of charged alumina membranes for methanogenic waste. J. Chem. Eng. Jpn., 22, 6, 635–641.
  • Singh, G., Song, L. F. (2006). Cake compressibility of silica colloids in membrane filtration processes. Ind. Eng. Chem. Res., 45, 22, 7633–7638.
  • Spychała, M., Błażejewski, R. (2003). Sand filter clogging by septic tank effluent. Water Sci. Technol., 48, 11, 153–159.
  • Spychała, M., Błażejewski, R., Nawrot, T. (2013). Performance of innovative textile biofilters for domestic wastewater treatment. Environ. Technol., 34, 2, 157–163.
  • Spychała, M., Starzyk, J. (2015). Bacteria in non-woven textile filters for domestic wastewater treatment. Environ. Technol., 36, 8, 937–945.
  • Vyrides, I., Stuckey, D. C. (2011). Fouling cake layer in a submerged anaerobic membrane biore-actor treating saline wastewaters: curse or a blessing? Water Sci. Technol., 63, 12, 2902–2908.
  • Yun, M. A., Yeon, K. M., Park, J. S., Lee, C. H., Chun, J., Lim, D. J. (2006). Characterization of biofilm structure and its effect on membrane permeability in MBR for dye wastewater treat-ment. Water Res., 40, 1, 45–52.
  • Żużikow, W. A. (1985). Filtracja. Teoria i praktyka rozdzielania zawiesin. Warszawa: WNT.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-41427f22-15d2-4d2c-91b0-8dccb5e1794a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.