PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2012 | 34 | 4 |

Tytuł artykułu

An integrated analysis of the rosmarinic acid-biosynthetic genes to uncover the regulation of rosmarinic acid pathway in Salvia miltiorrhiza

Autorzy

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Medicinal Salvia miltiorrhiza is renowned for its curative effects on cardiovascular diseases. Its biologically active ingredients include rosmarinic acid (RA) and its derivative, salvianolic acid B (SAB). We used available bioinformatics tools to improve our knowledge about the biosynthesis of these phenolic compounds. Our comprehensive description of cis-acting regulatory elements in the RA pathway provides insights into the potential transcriptional regulation of that pathway. For example, a lightresponsive element was the most abundant and widespread motif, suggesting that light is a universal regulatory factor of RA synthesis in S. miltiorrhiza. Therefore, we examined gene transcripts and the accumulation of hydrophilic pharmacological compounds in light-treated plants. Canonical correlation analysis was also used to construct a gene-tometabolite network. We obtained a high correlation coefficient (0.986), which generally indicated a clear and close relationship between RA-biosynthetic genes and desirable metabolites. We also screened PAL1, C4H, and HPPR, genes directly linked to the accumulation of RA and SAB. Our results can serve as the basis for better understanding RA synthesis in S. miltiorrhiza, and they will increase the practical potential for metabolic engineering of this important medicinal species.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

34

Numer

4

Opis fizyczny

p.1501-1511,fig.,ref.

Twórcy

autor
  • Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, Shaanxi Normal University, 199 South Chang'an Road, Xi'an 710062, Shaanxi, People's Republic of China
  • Institute of Applied Mechanics and Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, Shanxi, People's Republic of China
autor
  • Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, Shaanxi Normal University, 199 South Chang'an Road, Xi'an 710062, Shaanxi, People's Republic of China
autor
  • Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, Shaanxi Normal University, 199 South Chang'an Road, Xi'an 710062, Shaanxi, People's Republic of China
autor
  • Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, Shaanxi Normal University, 199 South Chang'an Road, Xi'an 710062, Shaanxi, People's Republic of China

Bibliografia

  • Achnine L, Blancaflor EB, Rasmussen S, Dixon RA (2004) Colocalization of L-phenylalanine ammonia-lyase and cinnamate 4-hydroxylase for metabolic channeling in phenylpropanoid biosynthesis. Plant Cell 16:3098–3109
  • China Pharmacopoeia Committee (2010) Chinese Pharmacopoeia of People’s Republic of China. Chemical Industry, Beijing, p 71
  • Cukovic D, Ehlting J, van Ziffle JA, Douglas CJ (2001) Structure and evolution of 4-coumarate: coenzyme A ligase (4CL) gene families. J Biol Chem 382:645–654
  • Dean C, Schmidt R (1995) Plant genomes: a current description. Annu Rev Plant Physiol Plant Mol Biol 46:395–418
  • Dixon RA, Paiva NL (1995) Stress-induced phenylpropanoid metabolism. Plant Cell 7:1085–1097
  • Dong J, Wan G, Liang Z (2010) Accumulation of salicylic acidinduced phenolic compounds and raised activities of secondary metabolic and antioxidative enzymes in Salvia miltiorrhiza cell culture. J Biotechnol 148:99–104
  • Franklin AE, Cande WZ (1999) Nuclear organization and chromosome segregation. Plant Cell 11:523–534
  • Fukunaga K, Fujikawa Y, Esaka M (2010) Light regulation of ascorbic acid biosynthesis in rice via light responsive ciselements in genes encoding ascorbic acid biosynthetic enzymes. Biosci Biotechnol Biochem 74:888–891
  • Gilmartin PM, Sarokin L, Memelink J, Chua NH (1990) Molecular light switches for plant genes. Plant Cell 2:369–378
  • Halliday KJ, Fankhauser C (2003) Phytochrome-hormonal signalling networks. New Phytol 157:449–463
  • Huang B, Duan Y, Yi B, Sun L, Lu B, Yu X, Sun H, Zhang H, Chen W (2008a) Characterization and expression profiling of cinnamate 4-hydroxylase gene from Salvia miltiorrhiza in rosmarinic acid biosynthesis pathway. Russ J Plant Physiol 5:431–440
  • Huang B, Yi B, Duan Y, Sun L, Yu X, Guo J, Chen W (2008b) Characterization and expression profiling of tyrosine aminotransferase gene from Salvia miltiorrhiza (Dan-shen) in rosmarinic acid biosynthesis pathway. Mol Biol Rep 35:601–612
  • Ibraheem O, Botha CE, Bradley G (2010) In silico analysis of cisacting regulatory elements in 5' regulatory regions of sucrose transporter gene families in rice (Oryza sativa japonica) and Arabidopsis thaliana. Comput Biol Chem 34:268–283
  • Kim KH, Janiak V, Petersen M (2004) Purification, cloning and functional expression of hydroxyphenylpyruvate reductase involved in rosmarinic acid biosynthesis in cell cultures of Coleus blumei. Plant Mol Biol 54:311–323
  • Liu AH, Li L, Xu M, Lin YH, Guo HZ, Guo DA (2006) Simultaneous quantification of six major phenolic acids in the roots of Salvia miltiorrhiza and four related traditional Chinese medicinal preparations by HPLC-DAD method. J Pharm Biomed Anal 41:48–56
  • Ma L, Zhang X, Guo H, Gan Y (2006) Determination of four water-soluble compounds in Salvia miltiorrhiza Bunge by highperformance liquid chromatography with a coulometric electrode array system. J Chromatogr B Analyt Technol Biomed Life Sci 833:260–263
  • Minami E, Ozeki Y, Matsuoka M, Koiruka N, Tanaka Y (1989) Structure and some characterization of the gene for phenylalanine ammonia-lyase from rice plants. Eur J Biochem 185:19–25
  • Petersen M (2007) Current status of metabolic phytochemistry. Phytochemistry 68:2847–2860
  • Petersen M, Simmonds MS (2003) Rosmarinic acid. Phytochemistry 62:121–125
  • Petersen M, Haüsler E, Karwatzki B, Meinhard J (1993) Proposed biosynthetic pathway for rosmarinic acid in cell cultures of Coleus blumei Benth. Planta 189:10–14
  • Petersen M, Abdullah Y, Benner J, Eberle D, Gehlen K, Hücherig S, Janiak V, Kim KH, Sander M, Weitzel C, Wolters S (2009) Evolution of rosmarinic acid biosynthesis. Phytochemistry 70:1663–1679
  • Rischer H, Oresic M, Seppanen-Laakso T, Katajamaa M, Lammertyn F, Ardiles-Diaz W, van Montagu MC, Inze D, Oksman-Caldentey KM, Goossens A (2006) Gene-to-metabolite networks for terpenoid indole alkaloid biosynthesis in Catharanthus roseus cells. Proc Natl Acad Sci USA 103:5614–5619
  • Rombauts S, Déhais P, van Montagu M, Rouzé P (1999) PlantCARE, a plant cis-acting regulatory element database. Nucl Acids Res 27:295–296
  • Singh KB, Foley RC, Onate-Sánchez L (2002) Transcription factors in plant defence and stress responses. Curr Opin Plant Biol 5:430–436
  • Song J, Wang Z (2009) Molecular cloning, expression and characterization of a phenylalanine ammonia-lyase gene (SmPAL1) from Salvia miltiorrhiza. Mol Biol Rep 36:939–952
  • Song J, Wang Z (2011) RNAi-mediated suppression of the phenylalanine ammonia-lyase gene in Salvia miltiorrhiza causes abnormal phenotypes and a reduction in rosmarinic acid biosynthesis. J Plant Res 124:183–192
  • Wang H, Ma LG, Li JM, Zhao HY, Deng XW (2001) Direct interaction of Arabidopsis cryptochromes with COP1 in light control development. Science 294:154–158
  • Wyeth WW, Albin S (2004) Applied bioinformatics for the identification of regulatory elements. Nat Rev Genet 5:276–287
  • Xiao Y, Gao S, Di P, Chen J, Chen W, Zhang L (2009) Methyl jasmonate dramatically enhances the accumulation of phenolic acids in Salvia miltiorrhiza hairy root cultures. Physiol Plant 137:1–9
  • Yan Q, Shi M, Ng J, Wu JY (2006) Elicitor-induced rosmarinic acid accumulation and secondary metabolism enzyme activities in Salvia miltiorrhiza hairy roots. Plant Sci 170:853–858
  • Zhang Y, Yan Y, Wang Z (2010) The Arabidopsis PAP1 transcription factor plays an important role in the enrichment of phenolic acids in Salvia miltiorrhiza. J Agric Food Chem 58:12168–12175
  • Zhao SJ, Hu ZB, Liu D, Leung FC (2006) Two divergent members of 4-coumarate:coenzyme A ligase from Salvia miltiorrhiza Bunge: cDNA cloning and functional study. J Integr Plant Biol 48:1355–1364
  • Zhou L, Zuo Z, Chow MS (2005) Danshen: an overview of its chemistry, pharmacology, pharmacokinetics, and clinical use. J Clin Pharmacol 45:1345–1359

Uwagi

Rekord w opracowaniu

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-412120ac-08b3-43c2-8df7-96747b84ec1c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.