PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2014 | 36 | 08 |
Tytuł artykułu

Mechanical properties of Callitriche cophocarpa leaves under Cr(VI)/Cr(III) influence

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Submersed Callitriche cophocarpa is an outstanding Cr phytoremediator in water systems. The mineral elements in waters can penetrate the submersed plant surface. This has led us to the hypothesis that the absorbed Cr can alter the mechanical properties of leaves. These properties were measured by applying atomic force microscopy. C. cophocarpa shoots were immersed in 100 µM (5.2 mg/l) Cr solution for 7 days. Cr was applied independently at two distinct oxidation states as Cr(VI) and Cr(III), known from different physicochemical properties and toxic effects. The contents of elements which were proportional to the fluorescence signal in individual leaves were evaluated using micro-X-ray fluorescence spectroscopy. The results obtained showed that the leaf epidermis significantly changes its elastic properties upon incubation with Cr-supplemented solution. When compared to the control, a drop in the leaf’s stiffness observed for Cr(III) was ca. 42 %. In the case of Cr(VI)-treated leaves, the stiffness raised to ca. 17 %. The changes in elasticity were significantly correlated with the contents of Ca (Pearson’s coefficient r = 0.87, p < 0.017). The results led us to ascertain that it is Cr(III) but not Cr(VI) that significantly influences Ca removal from leaves thus decreasing the stiffness of the leaf’s epidermis.
Słowa kluczowe
Wydawca
-
Rocznik
Tom
36
Numer
08
Opis fizyczny
p.2025-2032,fig.,ref.
Twórcy
  • Unit of Botany and Plant Physiology, Institute of Plant Biology and Biotechnology, Faculty of Horticulture, University of Agriculture in Krakow, Al. 29 Listopada 54, 31-425 Krakow, Poland
autor
  • The Henryk Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, Radzikowskiego 152, 31-342 Krakow, Poland
autor
  • Department of Medical Physics and Biophysics, Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Krakow, Poland
Bibliografia
  • Appenroth KJ, Luther A, Jetschke G, Gabrys H (2008) Modification of chromate toxicity by sulphate in duckweeds (Lemnaceae). Aquat Toxicol 89:167–171
  • Augustynowicz J, Grosicki M, Hanus-Fajerska E, Lekka M, Waloszek A, Kołoczek H (2010) Chromium(VI) bioremediation by aquatic macrophyte Callitriche cophocarpa Sendtn. Chemosphere 79:1077–1083
  • Augustynowicz J, Kyzioł-Komosińska J, Smoleń S, Waloszek A (2013) Study on Cr binding capacity to Callitriche cophocarpa in an aquatic environment. Arch Environ Contam Toxicol 64:410–418
  • Augustynowicz J, Tokarz K, Baran A, Płachno B (2014) Phytoremediation of water polluted by Tl, Zn, Cd, and Pb with the use of macrophyte Callitriche cophocarpa. Arch Environ Contam Toxicol 66:572–581
  • Chandra P, Kulshreshtha K (2004) Chromium accumulation and toxicity in aquatic plants. Bot Rev 70:313–327
  • Codd R, Dillon CT, Levina A, Lay P (2001) Studies on genotoxicity of chromium: from the test tube to the cell. Coord Chem Rev 216–217:537–582
  • Dhal B, Das NN, Thatoi HN, Pandey BD (2013) Characterizing toxic Cr(VI) contamination in chromite mine overburden dump and its bacterial remediation. J Hazard Mater 260:141–149
  • Frontasyeva MF, Pavlov SS, Aksenova NG, Mosulishvil LM, Belokobylskii AI, Kirkesali EI, Ginturi EN, Kuchava NE (2009) Chromium interaction with blue-green microalga Spirulina platensis. J Anal Chem 64:746–749
  • Kaszycki P, Gabryś H, Appenroth KJ, Jaglarz A, Sędziwy S, Walczak T, Koloczek H (2005) Exogenously applied sulphate as a tool to investigate transport and reduction of chromate in the duckweed Spirodela polyrhiza. Plant Cell Environ 28:260–268
  • Kimbrough DE, Cohen Y, Winer AM, Creelman L, Mabuni C (1999) A critical assessment of chromium in the environment. Crit Rev Environ Sci Technol 29:1–46
  • Kotaś J, Stasicka Z (2000) Chromium occurrence in the environment and methods of its speciation. Environ Poll 107:263–283
  • Kyzioł-Komosińska J, Kukułka L (2008) Application of minerals cooccurring in brown coal deposits to removal of heavy metals from water and wastewater. Works and Studies 75. Polish Academy of Sciences, Zabrze (in Polish)
  • Mohan D, Pittman Jr ChU (2006) Activated carbon and low cost adsorbents for remediation of tri- and hexavalent chromium form water. J Hazard Mater 137:762–811
  • Nieboer E, Richardson DHS (1980) The replacement of the nondescript term ‘‘heavy metals’’ by biologically and chemically significant classification on metal ions. Environ Pollut 1:3–26
  • PN-EN ISO 17294-1:2007. Water quality: application of inductively coupled plasma mass spectrometry (ICP-MS). Part 1: general guidelines. Polish Committee for Standardization, Warsaw, Poland
  • PN-EN ISO 9963-1:2001. Water quality: determination of alkalinity. Part 1: determination of total and composite alkalinity. Polish Committee for Standardization, Warsaw, Poland
  • PN-ISO 9297:1994. Water quality: determination of chloride—silver nitrate titration with chromate indicator (Mohr’s method). Polish Committee for Standardization, Warsaw, Poland
  • Punshon T, Guerinot ML, Lanzirotti A (2009) Using synchrotron X-ray fluorescence microprobes in the study of metal homeostasis in plants. Ann Bot 103:665–672
  • Regulation, 9th of Nov 2011: Rozporządzenie Ministra Środowiska z dn. 9 listopada 2011 r. w sprawie sposobu klasyfikacji stanu jednolitych wód powierzchniowych oraz środowiskowych norm jakości dla substancji priorytetowych. Dziennik Ustaw nr 257, poz. 1545 (in Polish)
  • Saha R, Nandi R, Saha B (2011) Sources and toxicity of hexavalent chromium. J Coord Chem 64:1782–1806
  • Schwartz K, Mertz W (1959) Chromium(III) and the glucose tolerant factor. Arch Biochem Biophys 85:292–295
  • Shanker AK, Cervantes C, Loza-Tavera H, Avudainayagam S (2005) Chromium toxicity in plants. Environ Int 31:739–753
  • Sperling M, Xu S, Welz B (1992) Determination of chromium(III) and chromium(VI) in water using flow injection on-line preconcentration with selective adsorption on activated alumina and flame atomic absorption spectrometric detection. Anal Chem 64:3101–3108
  • StatSoft, Inc. (2011) STATISTICA (data analysis software system), version 10. http://www.statsoft.com
  • Ubarretxena-Belandia I, Boots JW, Verheij HM, Dekker N (1998) Role of the cofactor calcium in the activation of outer membrane phospholipase A. Biochemistry 37:16011–16018
  • Van der Ent A, Baker AJM, Reeves RD, Pollard AJ, Schat H (2013) Hyperaccumulators of metal and metalloid trace elements: facts and fiction. Plan Soil 362:319–334
  • Vileno B, Lekka M, Sienkiewicz A, Jeney S, Stoessel G, Lekki J, Forro L (2007) Stiffness alterations of single cells induced by UV in the presence of nanoTiO₂. Environ Sci Technol 41:5149–5153
  • Węgrzynek D, Mroczka R, Markowicz A, Chinea-Cano E, Bamford S (2008) Experimental evaluation of X-ray optics applied for microanalysis. X-Ray Spectrom 37:635–641
  • White PJ, Broadley MR (2003) Calcium in plants. Ann Bot 92:487–511
  • Wróbel M, Czyżycki L, Furman K, Kolasiński M, Lankosz M, Mrenca A, Samek L, Węgrzynek D (2012) LabVIEW control software for scanning micro-beam X-ray fluorescence spectrometer. Talanta 93:186–192
  • Zayed AM, Terry N (2003) Chromium in the environment: factors affecting biological remediation. Plant Soil 249:139–156
Uwagi
Rekord w opracowaniu
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-410f48d2-ceeb-4cfd-9843-9395e2a9d83a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.