PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2015 | 20 | 4 |

Tytuł artykułu

Selected chemical and physicochemical properties of sediments in Moszne Lake and mire (Polesie National Park)

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Properties of peat reflect the peat-forming environment, peat development processes and the types of peat-forming plant. They also enable peat classification and quality evalution. Investigation of the physicochemical properties of organic matter is the key to understanding the history, evolution and geology of bogs. The purpose of this study was to determine some physicochemical properties, such as pH, Eh, electrolytic conductivity, carbon forms in water extracts and dry peat samples (TOC, IC, TC), degree of decomposition, macrofossil plant analysis and ash content, in a whole stratigraphic profile of bog sediment located near Lake Moszne. The research comprised a 17.5 ha lake, which was described in the 1990s as a dystrophic one, and the adjacent mires. The open water surface of the lake is surrounded by a 30–150 m wide belt of floating mat, composed of peatmosses and sedges with the dominant Sphagno-Caricetum rostratae association, all representing vegetation typical for transitional mires. These communities are most often found in the Polesie Lubelskie Region, in old lakes, and usually on their floating mat. The research material was collected from such a site. The analysis demonstrated acidic pH (4.17 in profile I and 4.08 in profile II, respectively) in the layer of 0-0.65 m, whilst from the 1.50 m depth to the mineral bottom the pH increased to nearly neutral (pH = 6.62 ± 0.18 in profile I and pH = 6.45 ± 0.12 in profile II). Redox potential in the surface layer corresponds to good oxygenation of mineral soils: 577 mV and 490 mV for profile I and II, respectively. A nearly linear decrease of Eh was observed to about 118 mV at the depth of 2.50 m. Lower than that, down to the depth of 3.50 m, the Eh value was stabilized. The graphical presentation of the Eh-pH relationship shows that in both cases (profiles I and II) aerobiosis prevails to the depth of 0.45-0.65 m, confirming that oxygen continues to be the final electron acceptor.

Wydawca

-

Rocznik

Tom

20

Numer

4

Opis fizyczny

p.1041-1052,fig.,ref.

Twórcy

autor
  • Institute of Soil Science, Environment Engineering and Environmental Management, University of Life Sciences in Lublin, K.Leszczynskiego str. 7, 20-069 Lublin, Poland
autor
  • Institute of Soil Science, Environment Engineering and Environmental Management, University of Life Sciences in Lublin, K.Leszczynskiego str. 7, 20-069 Lublin, Poland
  • Department of Biochemistry and Environmental Chemistry, The John Paul II Catholic University of Lublin, Lublin, Poland
  • Department of Biochemistry and Environmental Chemistry, The John Paul II Catholic University of Lublin, Lublin, Poland

Bibliografia

  • Bartlett R.J., James B.R. 1993. Redox chemistry of soils. Adv. Agron., 50: 151-208. DOI: 10.1016/ S0065-2013(08)60834-2
  • Bartlett Benada J.K. 1995. Measurement of redox potential. Obilnarske Listy, 3: 48-49. (in Czech)
  • Bielińska E. J., Smal H., Misztal M., Ligęza S. 2003. Enzymatic activity of soils near littoral zone of lakes Piaseczno, Łukie and Moszne. Acta Agroph., 1(3): 369-375. (in Polish)
  • Brady N.C,. Weil R.R. 2010. Elements of the nature and properties of soils. Pearson Education International, New Jersey.
  • Bohrerova Z., Stralk ova R., Podesvova J., Bohrer G., Pokorny E. 2004. The relationship between redox potential and nitrification under different sequences of crop rotations. Soil Tillage Res., 77: 25-33. http://www.sciencedirect.com/science/article/pii/S0167198703002344.
  • Call ebaut F., Gabriels D., Minjauw W., De Boodt M. 1982. Redox potential, oxygen diffusion rate, and soil gas composition in relation to water table level in two soils. Soil Sci., 134(3): 149-156.
  • Chadwick O.A., Chorover J. 2001. The chemistry of pedogenic thresholds. Geoderma, 100: 321-353. http://www.sciencedirect.com/science/article/pii/S0016706101000271.
  • Comas, X., Slater L. 2004. Low-frequency electrical properties of peat. Water Resources Res., 40: 1-9. DOI: 10.1029/2004WR003534
  • Dobrowolski R., Bałaga K., Rodzik J., Gazd L. 2009. Bottom deposits of Lake Moszne in the Polesie National Park lithostratigraphy and palaeoenvironmental interpretation. Teka Kom. Ochr. Kszt. Środ. Przyr. – OL PAN, 6: 51-57, http://www.pan-ol.lublin.pl/wydawnictwa /TOchr6/Dobrowolski.pdf.
  • Dombrowskaja A.B., Korieniewa M.M., Tjuremnow C.N. 1969. Atlas of plant remains occurring in peat. Moskwa-Leningrad. (in Russian)
  • Glatzel S., Basiliko N., Moore T., 2004. Carbon dioxide and methane production potential of peat from natural, harvested and restored sites, eastern Québec, Canada. Wetlands, 24(2): 261-267.
  • Gliński J., Stępniewski W. 1985. Soil aeration and its role for plants. CRC Press Inc. Boca Raton, Florida, 1-219.
  • Grosse-Brauck mann G. 1972. Über pflanzliche Makrofossilien mitteleuropäischer Torfe. I. Gewebereste. krautiger Pflanzen und ihre Merkmale. Telma, 2: 19-55.
  • Grosse-Brauck mann G. 1974. Über pflanzliche Makrofossilien mitteleuropäischer Torfe. II. Weitere reste (Früchte und Samen, Moose u.a) und ihre Bestimmingsmöglichkeiten. Telma, 4: 51-117.
  • Grosse-Brauck mann G., Streitz B. 1992. Pflanzliche Makrofossilien mitteleuropäischer Torfe. III. Früchte, Samen und einige Gewebe (Fotos von fossilen Pflanzenresten). Telma, 22: 53-102.
  • Kewei Yu , Faulk ner S. P., Patrick W. H. JR. 2006. Redox potential characterization and soil greenhouse gas concentration across a hydrological gradient in a Gulf coast forest. Chemosphere, 62: 905-914.
  • Lubliner-Mianowska K. 1951. Directions for the study of peat. PWT, Katowice, pp. 88. (in Polish)
  • Maciak F. 1995. Evaluation of the biological activity of boggy soil and peat on the basis of carbon and nitrogen mineralization. Rocz. Glebozn., 46(3/4): 19-27. (in Polish)
  • Malawska M., Ekonomiuk A., Wiłkomirski B. 2006. Chemical characteristics of some peatlands in southern Poland. Mires Peat, 1: 1-14. http://pixelrauschen.de/wbmp/media/map01/map_1_2.pdf.
  • Marshall , T.J., Holmes, J.W. 1988. The physical environment of roots. In: Soil physics. Cambridge University, pp. 374.
  • Mirek Z., Piękoś-Mirkowa H., Zając A., Zając M. 2002. Flowering plants and pteridophytes of Poland; a checklist. W. Szafer Inst. of Botany, Polish Academy of Sciences, Kraków, pp. 442.
  • Ochyra R., Żarnowiec J., Bednarek-Ochyra H. 2003. Census catalogue of Polish mosses. Polish Academy of Scienes, Institute of Botany, Kraków, pp. 372.
  • Ponnamperuma F.N. 1972. The chemistry of submerged soils. Adv. Agron., 24: 29-96. http://pdf.usaid.gov/pdf_docs/PNAAA956.pdf
  • Ponziani M., Slob E.C., Ngan-Till ard D.J.M., Vanhala H. 2011. Influence of water content on the electrical conductivity of peat. Int. Water Technol. J., 1(1): 14-21. http://iwtj.info/wp-content/uploads/2011/12/v1-n1-p2.pdf
  • Reddy K.R., Patrick JR . W.H. 1975. Effect of alternate aerobic and anaerobic conditions on redox potential, organic matter decomposition and nitrogen loss in a flooded soil. Soil Biol. Biochem., 7: 87-94, http://soils.ifas.ufl.edu/wetlands/publications/PDF-articles/5.Effect%20 of%20Alternate%20Aerobic%20and%20Anaerobic.pdf
  • Sapek A., Sapek B. 1997. Methods of chemical analysis of organic soils. Wyd. IMUZ, Falenty, pp. 80.
  • Tobolski K. 2000. Guide for peats and lacustrine deposits identification. Warszawa, pp. 508.
  • Tobolski K. 2004. Geological criteria in the studies of biogenic accumulation basin. Regionalny Monitoring Środowiska Przyrodniczego, 5: 119-126. (in Polish) http://www.ujk.edu.pl/ios/wydawnictwa/z5/tobolski.pdf
  • Theimer, B.D., Nobes, D.C., Warner, B.G. 1994. A study of the geo-electrical properties of peatlands and their influence on ground-penetrating radar surveying. Geophysical Prospecting, 42(3): 179-209. http://onlinelibrary.wiley.com/doi/10.1111/j.1365-2478.1994.tb00205.x/ abstract.
  • Urban D. 2008. Contents of macronutrients and microelements in soils of Bagno Serebryskie peat-bog (Bog-moor soils). Teka Kom. Ochr. Kszt. Środ. Przyr. – OL PAN, 5: 164-171. http://www.pan-ol.lublin.pl/wydawnictwa/TOchr5/Urban_1.pdf
  • Wójcikowska-Kapusta A., Urban D. 2008. Chosen chemical properties of soils from basin and an inner-field peat Albertów. Teka Kom. Ochr. Kszt. Środ. Przyr. – OL PAN, 5: 208-213, http://www.pan-ol.lublin.pl/wydawnictwa/TOchr5/Wojcikowska.pdf
  • Volk , N.J. 1993. The effect on oxidation-reduction potential on plant growth. J. Am. Soc. Agron., 31(8): 665-670.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-410c1fc5-938e-4584-84e2-279eceb8dfc2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.