PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2012 | 62 | 3 |
Tytuł artykułu

Healthy multifunctional spectra of milk glycoproteins and their fragments - a review article

Autorzy
Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The functionalities of glycoprotein lactoferrin (LF) and glycomacropeptide (GMP) were discussed. LF is considered a multifunctional protein. Its absorption in the bowel; immune response; antioxidant, anti-carcinogenic and anti-infl ammatory properties; and protection against microbial infection, were the most widely studied functions to date. Besides, promotion of balanced intestinal fl ora by preventing growth of harmful bacteria and stimulating bifi dus, LF helps to secure a correct balance of the intestinal fl ora. Although, most of the proposed biological activities of LF are related to the binding of iron, the non-iron related functions have been described as well, such as regulation of iron metabolism, prevention of oxidation and control of cell or tissues damage (result of aging). Likewise, GMP, which is a carbohydrate-containing peptide formed from chymosin or pepsin digestion of κ-casein, exhibits several useful biological activities, including binding of cholera toxin and E. coli enterotoxins, inhibition of bacterial and viral adhesions, suppression of gastric secretions, promotion of bifi dobacterial growth, and modulation of immune responses. GMP contains no aromatic amino acids and is therefore used for phenylketonuria (PKU) suffering patients. The carbohydratic parts bound to such glycoprotein or glycopeptide, may act as prebiotics in the intestine and colon.
Słowa kluczowe
Wydawca
-
Rocznik
Tom
62
Numer
3
Opis fizyczny
p.125-142,fig.,ref.
Twórcy
autor
  • Food Science Department, Faculty of Agriculture, Ain Shams University, Cairo, Egypt
Bibliografia
  • 1. Abe H., Saito H., Miyakawa H., Tamura Y., Shimamura S., Nagao E., Tomita M., Heat stability of bovine lactoferrin at acidic pH. J. Dairy Sci., 1991, 74, 65–71.
  • 2. Adlerova L., Bartoskova A., Faldyna M., Lactoferrin: a review. Veterinarni Medicina, 2008, 53, 457–468.
  • 3. Ajello M., Greco R., Giansanti F., Massucci M.T., Antonini G., Valenti P., Anti-invasive activity of bovine lactoferrin towards group A streptococci. Biochem. Cell Biol., 2002, 80, 119–124.
  • 4. Aleinik S.I., Stan E.Y., Chernikov M.P., Study of the mechanism of acid secretion inhibition with κ-casein peptides in the stomach. Fiziologicheskii Zhurnal SSSR, 1986, 72, 799–803.
  • 5. Andres M.T., Fierro J.F., Antimicrobial mechanism of action of transferrins: Selective inhibition of H+-ATPase. Antimicrob. Agents Chemother., 2010, 54, 4335–4342.
  • 6. Andersen J.H., Osbakk S.A., Vorland L.H., Traavik T., Gutteberg T.J., Lactoferrin and cyclic lactoferricin inhibit the entry of human cytomegalovirus into human fi broblasts. Antiviral Res., 2001, 51,141–149.
  • 7. Anonymous, Overview of lactoferrin. Agro Food Industry Hi- Tech., 2003, 14, 32–35.
  • 8. Arnold R.R., Cole M.F., McGhee J.R., A bactericidal effect for human lactoferrin. Science, 1977, 197, 263–265.
  • 9. Azuma N., Yamauchi K., Mitsouka T., Bifi dius growth-promoting activity of a glycomacropeptide derived from human κ-casein. Agric. Biol. Chem., 1984, 48, 2159–2162.
  • 10. Baker E.N., Baker H.M., Molecular structure, binding properties and dynamics of lactoferrin. Cell. Mol. Life Sci., 2005, 62, 2531–2539.
  • 11. Batish V.K., Chander H., Zumdegeni K.C., et al., Antibacterial activity of lactoferrin against some common food-borne pathogenic organisms. Aust. J. Dairy Tech., 1988, 43, 16–18.
  • 12. Baveye S., Elass E., Mazurier J., Spik G., Legrand D., Lactoferrin: a multifunctional glycoprotein involved in the modulation of the infl ammatory process. Clin. Chem. Lab. Med., 1999, 37, 281–286.
  • 13. Bellamy W., Takase M., Wakabayashi H., Kawase K., Tomita M., Identifi cation of the bactericidal domain of lactoferrin. Biochim. Biophys. Acta, 1992, 1121, 130–136.
  • 14. Bessler H.C., de Oliveira I.R., Giugliano L.G., Human milk glycoproteins inhibit the adherence of Salmonella typhimurium to HeLa cells. Microbiol. Immunol., 2006, 50, 877–882.
  • 15. Beucher S., Levenez F., Yvon M., Corring T., Effect of gastric digestive products from casein on CCK release by intestinal cells in rat. J. Nutr. Biochem., 1994a, 5, 578–584.
  • 16. Beucher S., Levenez F., Yvon M., Corring T., Effect of caseinomacropeptide (CMP) on cholecystokinin (CCK) release in rat. Reprod. Nutr. Dev., 1994b, 34, 613–614.
  • 17. Bezkorovainy A., Grolich D., Nichols J.H., Isolation of a glycopolypeptide fraction with Lactobacillus bifi dus subspecies pennsylvanicus growth-promoting activity from whole human milk casein. Am. Clin. Nutr., 1979, 32, 1428–1432.
  • 18. Birgens H.S., Lactoferrin in plasma measured by an ELISA technique: evidence that plasma lactoferrin is an indicator of neutrophil turnover and bone marrow activity in acute leukemia. Scand. J. Haematol., 1985, 34, 326–331.
  • 19. Bortner C.A., Arnold R.R., Miller R.D., Bactericidal effect of lactoferrin on Legionella pneumophila: effect of the physiological state of the organism. Can. J. Microbiol., 1989, 35, 1048–1051.
  • 20. Boxer L.A., Coates T.D., Haak R.A., Wolach J.B., Hoffstein S., Baehner R.L., Lactoferrin defi ciency associated with altered granulocyte function. New Engl. J. Med., 1982, 307, 404–410.
  • 21. Breton-Gorius J., Mason D.Y., Buriot D., et al., Lactoferrin defi ciency as a consequence of a lack of specifi c granules in neutrophils from a patient with recurrent infections. Detection by immunoperoxidase staining for lactoferrin and cytochemical electron microscopy. Am. J. Pathol., 1980, 99, 413–428.
  • 22. Brody E.P., Biological activities of bovine glycomacropeptide. Br. J. Nutr., 2000, 84, S39-S46.
  • 23. Brock J.H., Human cytokines. 1998, in: Handbook for Basic and Clinical Research. Vol. 3. (ed. B.B. Aggarwal). Blackwell Publ., Inc., Malden, Mass. pp. 92–123.
  • 24. Brock J.H., The physiology of lactoferrin. Biochem. Cell Biol., 2002, 80, 1–6.
  • 25. Bruck W.M., Graverholt G., Gibson G.R., A two-stage continuous culture system to study the effect of supplemental alphalactalbumin and glycomacropeptide on mixed cultures of human gut bacteria challenged with enteropathogenic Escherichia coli and Salmonella serotype typhimurium. J. Appl. Microbiol., 2003a, 95, 44–53.
  • 26. Bruck W.M., Kelleher S.L., Gibson G.R., Nielsen K.E., Chatterton D.E., Lönnerdal B., rRNA probes used to quantify the effects of glycomacropeptide and alpha-lactalbumin supplementation on the predominant groups of intestinal bacteria of infant rhesus monkeys challenged with enteropathogenic Escherichia coli. J. Pediatr. Gastroenterol. Nutr., 2003b, 37, 273–280.
  • 27. Bruck W.M., Redgrave M., Tuohy K.M., Lönnerdal B., Graverholt G., Hernell O., Gibson G.R., Effects of bovine alpha-lactalbumin and casein glycomacropeptide-enriched infant formulae on faecal microbiota in healthy term infants. J. Pediatr. Gastroenterol. Nutr., 2006, 43 , 673–679.
  • 28. Caradonna L., Amati L., Lella P., Jirillo E., Caccavo D., Phagocytosis, killing, lymphocyte-mediated antibacterial activity, serum autoantibodies, and plasma endotoxins in infl ammatory bowel disease. Am. J. Gastroeneterol., 2000, 95, 1495–1502.
  • 29. Cirioni O., Giacometti A., Barchiesi F., Scalise G., Inhibition of growth of Pneumocystis carinii by lactoferrin alone and in combination with pyrimethamine, clarithromycin and minocycline. J. Antimicrob. Chemother., 2000, 46, 577–582.
  • 30. Clare R., The benefi ts of CMP. Dairy Industries Int., 1998, 63, 29–31.
  • 31. Daddaoua A., Puerta V., Zarzuelo A., Sua’rez M.D., Sa’nchez de Medina F., Martinez-Augustin O., Bovine glycomacropeptide is anti-infl ammatory in rats with Hapten-induced colitis. J. Nutr., 2005, 135, 1164–1170.
  • 32. Damiens E., El Yazidi I., Mazurier J., Duthille I., Spik G., Boilly- Marer Y., Lactoferrin inhibits G1 cyclin-dependent kinases during growth arrest of human breast carcinoma cell. J. Cell Biochem., 1999, 74, 486–498.
  • 33. Damiens E., Mazurier J., El Yazidi I., Masson M., Duthille I., Spik G., Boilly-Marer Y., Effects of human lactoferrin on NK cell cytotoxicity against haematopoietic and epithelial tumour cell. Biochim. Biophys. Acta, 1998, 1402, 277–287.
  • 34. Darewicz M., Dziuba B., Minkiewicz P., Dziuba J., The preventive potential of milk and colostrum proteins and protein fragments. Food Rev. Int., 2011, 27, 357–388.
  • 35. Devi A.S., Das M.R., Pandit M.W., Lactoferrin contains structural motifs of ribonuclease. Biochim. Biophys. Acta, 1994, 1205, 275–281.
  • 36. Dial E.J., Lichtenberger L.M., Effect of lactoferrin on Helicobacter felis induced gastritis. Biochem. Cell Biol., 2002, 80, 113–117.
  • 37. Di Mario F., Aragona G., Dal Bo N., Cavestro G.M., Cavallaro L., Iori V., Comparato G., Leandro G., Pilotto A., Franzè A., Use of bovine lactoferrin for Helicobacter pylori eradication. Dig. Liver Dis., 2003, 35, 706–710.
  • 38. Doi H., Ibuki F., Kanamori M., Hetrogeneneity of reduced bovine κ-casein. J. Dairy Sci., 1979, 62, 195–203.
  • 39. Doi H., Kobatake H., Fumio I., Kanamori M., Attachment sites of carbohydrate portions to peptide chain of κ-casein from bovine colostrum. Agric. Biol. Chem., 1980, 44, 2605–2611.
  • 40. Dosako S., Kusano H., Deya E., Idota T., Infectionprotectant. United States Patent, 1992, 5147853.
  • 41. Egashira M., Takayanagi T., Moriuchi M., Moriuchi H., Does daily intake of bovine lactoferrin-containing products ameliorate rotaviral gastroenteritis?. Acta Paediatr., 2007, 96, 1242–1244.
  • 42. Eigel W.N., Butler J.E., Ernstrom C.A., Farrell H.M., Harwalkar V.R., Jenness R., Whitney R.M., Nomenclature of proteins of cow’s milk: fi fth revision. J. Dairy Sci., 1984, 67, 1599–1631.
  • 43. Farnaud S., Evans R.W., Lactoferrin – a multifunctional protein with antimicrobial properties. Mol. Immunol., 2003, 40, 395–405.
  • 44. Farrell H.M. Jr., Jimenez-Flores R., Bleck G.T., Brown E.M., Butler J.E., Creamer L.K., Hicks C.L., Hollar C.M., Ng-Kwai-Hang K.F., Swaisgood H.E., Nomenclature of the proteins of cows’ milk—Sixth revision. J. Dairy Sci., 2004, 87, 1641–1674.
  • 45. Faure J.-C., Schellenberg D.A., Bexter A., Wuerzner H.P., Barrier effect of Bifi dobacterium longum on a pathogenic Escherichia coli strain by gut colonization in the germ-free rat. Zeitschrift fur Ernahrungswissenschaft, 1984, 23, 41–51.
  • 46. Fayed A.E., Hussein G.A., El-Mahdy L.D., Masoud M.S., Gab- Allah R.H., Glycoprotein fortifi cation of bioyoghurt. Egypt. J. Food Sci., 2011a, 39, 81–106.
  • 47. Fayed A.E., Hussein G.A., El-Mahdy L.D., Youssef M.S., Gab- Allah R.H., Improvement of yoghurt effi ciency as functional food by glycoprotein fortifi cation. J. Biol. Chem. Environ. Sci., 2011b, 6, 241–265.
  • 48. Fiat A.-M., Alais C., Jolles P., Caesin 25. The amino-acid and carbohydrate sequences of a short glycopeptide isolated from bovine κ-casein. Eur. J. Biochem., 1972, 27, 408–412.
  • 49. Fiat A-M., Jolles P., Caseins of various origins and biologically active casein peptides and oligosaccharides: structural and physiological aspects. Mol. and Cell. Biochem., 1989, 87, 5–30.
  • 50. Fiat A-M., Jolles J., Loucheux-Lefebvre M.-H., Alais C., Jolles P., Localization of the prosthetic sugar groups of bovine colostrum κ-casein. Hoppe-Seyler’s Zeitschrift fur Physiologische Chem., 1981, 362, 1447–1454.
  • 51. Fournet B., Fiat A.-M., Alais C., Jolles P., Cow κ-casein: structure of the carbohydrate portion. Biochim. Biophys. Acta, 1979, 576, 339–346.
  • 52. Fournet B., Fiat A.-M., Montreuil J., Jolles P., The sugar part of κ-caseins from cow milk and colostrum and its microheterogeneity. Biochimie, 1975, 57, 161–165.
  • 53. Furmanski P., Li Z.P., Fortuna M.B., Swamy C.V., Das M.R., Multiple molecular forms of human lactoferrin. Identifi cation of a class of lactoferrins that possess ribonuclease activity and lack iron-binding capacity. J. Exp. Med., 1989, 170, 415–429.
  • 54. Gahr M., Speer C.P., Damerau B., Sawatzki G., Infl uence of lactoferrin on the function of human polymorphonuclear leukocytes and monocytes. J. Leukoc. Biol., 1991, 49, 427–433.
  • 55. Gasymov O.K., Abduragimov A.R., Yusifov T.N., Glasgow B.J., Interaction of tear lipocalin with lysozyme and lactoferrin. Biochem. Biophys. Res. Comm., 1999, 265, 322–325.
  • 56. Gauthier S.F., Pouliot Y., Saint-Sauveur D., Immunomodulatory peptides obtained by the enzymatic hydrolysis of whey proteins. Int. Dairy J., 2006, 16, 1315–1323.
  • 57. Giansanti F., Rossi P., Massucci M.T., Botti D., Valenti G., Seganti L., Antiviral activity of ovotransferrin discloses an evolutionary strategy for defensive activities of lactoferrin. Biochem. Cell Biol., 2002, 80, 125–130.
  • 58. Gill H.S., Rutherford K.J., Cross M.L., Bovine milk: a unique source of immunomodulatory ingredients for functional foods. 2000, in: Functional Foods II – Claims and Evidence (eds. J. Buttriss, M. Saltmarsh). Royal Society of Chemistry Press, Cambridge, England, pp. 82–90.
  • 59. Glasgow L.R., Hill R.L., Interaction of Mycoplasma gallisepticum with sialyl glycoproteins. Inf. Immun., 1980, 30, 353–361.
  • 60. Gonzalez-Chavez S.A., Arevalo-Gallegos S., Rascon-Cruz Q., Lactoferrin: structure, function and applications. Int. J. Antimicrob. Agents, 2009, 33, 301e1–301e8.
  • 61. Gray-Owen S.D., Schryvers A.B., Bacterial transferring and lactoferrin receptors. Trends Microbiol., 1996, 4, 185–191.
  • 62. Griffi ths C.E., Cumberbatch M., Tucker S.C., Dearman R.J., Andrew S., Headon D.R., Kimber I., Exogenous topical lactoferrin inhibits allergen-induced Langerhans cell migration and cutaneous infl ammation in humans. Br. J. Dermatol., 2001, 144, 715–725.
  • 63. Guillen C., McInnes I.B., Vaughan D., Speekenbrink A.B., Brock J.H., The effect of local administration of lactoferrin on infl ammation in murine autoimmune and infectious arthritis. Arthritis Rheum., 2000, 43, 2073–2080.
  • 64. Guilloteau P., Chayvialle J.A., Mendy F., Roger L., Toullec R., Bernard C., Mouats A., Faverdin P., Effect of caseinomacropeptide (CMP) on gastric secretion and plasma levels of digestive hormones in preruminant calves. Reprod. Nutr. Dev., 1987, 27, 287–288.
  • 65. Guilloteau P., Huerou-Luron I., Chayviaille J.A., Toullec R., Legeas M., Bernard C., Roger L., Mendy F., Effect of caseinomacropeptide (CMP) on gastric secretion and plasma gut regulatory peptides in preruminant calves. Reprod. Nutr. Dev., 1994, 34, 612–613.
  • 66. Gyorgy P., Jeanloz R.W., Hubertus N., Zilliken F., Undialyzable growth factors for Lactobacillus bifi dus var. pennsylvanicus. Eur. J. Biochem., 1974, 43, 29–33.
  • 67. Gyorgy P., Kuhn R., Rose C.S., Zilliken F., Bifi dus factor. II. Its occurrence in milk from different species and in other natural products. Arch. Biochem. Biophys., 1954a, 48, 202–208.
  • 68. Gyorgy P., Norris R.F., Rose C.S., Bifi dus factor. I. A variant of Lactobacillus bifi dus requiring a special growth factor. Arch. Biochem. Biophys., 1954b, 48, 193–201.
  • 69. Holmgren J., Actions of cholera toxin and the prevention and treatment of cholera. Nature, 1981, 292, 413–416.
  • 70. Hutchens T.W., Henry J.F., Yip T.T., Hachey D.L., Schanler R.J., Motil K.J., Garza C., Origin of intact lactoferrin and its DNAbinding fragments found in the urine of human milk-fed preterm infants. Evaluation by stable isotopic enrichment. Pediatric Res., 1991, 29, 243–250.
  • 71. Idota T., Sialylated compounds in human milk and their physiological signifi cance in infants. Snow Brand R&D Reports, 1996, 106, 1–55.
  • 72. Iigo M., Kuhara T., Ushida Y., Moore M.A., Tsuda H., Inhibitory effects of bovine lactoferrin on colon carcinoma 26 lung metastasis in mice. Clin. Exp. Metastasis, 1999, 17, 35–40.
  • 73. Ikeda M., Nozaki A., Sugiyama K., Tanaka T., Naganuma A., Tanaka K, Sekihara H., Shimotohno K., Saito M., Kato N., Characterization of antiviral of lactoferrin against hepatitis C virus infection in human cultured cells. Virus Res., 2000, 66, 51–63.
  • 74. Ikeda M., Sugiyama K., Tanaka T., Lactoferrin markedly inhibits hepatitis C virus infection in cultured human hepatocytes. Biochem. Biophys. Res. Commun., 1998, 245, 549–553.
  • 75. Imoto I., Okuda M., Nakazawa T., Miyashiro E., Yamauchi K., Takakura N., Teraguchi S., Tamura Y., Adachi Y., Suppressive effect of bovine lactoferrin against Helicobacter pylori. Milk Sci., 2004, 53, 288–290.
  • 76. Isoda H., Kawasaki Y., Tanimoto M., Dosako S., Idota T., Use of compounds containing or binding sialic acid to neutralize bacterial toxins. Eur. Patent, 1999, 385112.
  • 77. Jolles J., Schoentgen F., Alais C., Fiat A.M., Jolles P., Studies on the primary structure of cow κ-casein – Structural features of para-κ-casein; N-termianl sequence of κ-caseinoglycopeptide studied with a sequencer. Helv. Chim. Acta, 1972, 55, 2872–2883.
  • 78. Jones E.M., Smart A., Bloomberg G., Burgess G., Millar M.R., Lactoferricin, a new antimicrobial peptide. J. Appl. Bacteriol., 1994, 77, 208–214.
  • 79. Kanyshkova T.G., Buneva V.N., Nevinsky G.A., Lactoferrin and its biological functions. Biochemistry (Moscow), 2001, 66, 1–7.
  • 80. Kawaguchi S., Hayashi T., Masano J., Okuyama K., Suzuki T., Kawase K., A study concerning the effect of lactoferrin-enriched infant formula on low birth weight infants. Periant. Med., 1989, 19, 557–562.
  • 81. Kawasaki Y., Isoda H., Shinmoto H., Tanimoto M., Dosako S., Idota T., Nakajima I., Inhibition by κ-casein glycomacropeptide and lactoferrin of infl uenza virus hemaglutination. Biosci. Biotech. Biochem., 1993, 57, 1214–1215.
  • 82. Kawasaki Y., Isoda H., Tanimoto M., Dosako S., Idota T., Ahiko K., Inhibition by lactoferrin and κ-casein glycomacropeptide of binding of cholera toxin to its receptor. Biosci. Biotech. Biochem., 1992, 56, 195–198.
  • 83. Kehagias C., Jao Y.C., Micolajcik E.M., Hansen P.M., Growth response of Bifi dobacterium bifi dum to a hydrolytic product isolated from bovine casein. J. Food Sci., 1977, 42, 146–150.
  • 84. Kelleher S.L., Chatterton D., Nielsen K., Lönnerdal B., Glycomacropeptide and α-lactalbumin supplementation of infant formula affects growth and nutritional status in infant rhesus monkeys. Am. J. Clin. Nutr., 2003, 77, 1261–1268.
  • 85. Kim W. S., Ohashi M., Tanaka T., Kumura H., Kim G.Y., Kwon I.K., Goh J.S., Shimazaki K.I., Growth-promoting effects of lactoferrin on L. acidophilus and Bifi dobacterium spp. Biometals, 2004, 17, 279–283.
  • 86. Korhonen H., Pihlanto A., Bioactive peptides: production and functionality. Int. Dairy J., 2006, 16, 945–690.
  • 87. Kozu T., Saito Y., Matsuda T., Akasu T., Iinuma G., Ohashi Y., Saito D., Tsuda H., Iigo M., Kakizoe T., The effi cacy of lactoferrin for suppression of colorectal adenomas. in: Proc. Sixty- fi fth Ann. Meet. the Japan. Cancer Assoc., 2006, pp. 461
  • 88. Kuwata H., Yamauchi K., Teraguchi S., Ushida Y., Shimo- Kawa Y., Toida T., Hayasawa H., Functional fragments of ingested lactoferrin are resistant to proteolytic degradation in the gastrointestinal tract of adult rats. J. Nutr., 2001, 131, 2121–2127.
  • 89. LaBell F., Health-enhancing whey proteins. Prepared Foods, 1998, 167, 143.
  • 90. Lampreave F., Piňeiro A., Brock J.H., Castillo H., Sánchez L., Calvo M., Interaction of bovine lactoferrin with other proteins of milk whey. Int. J. Biol. Macromol., 1990, 12, 2–5.
  • 91. Levay P.F., Viljoen M., Lactoferrin: a general review. Haematologica, 1995, 80, 252–267.
  • 92. Li E.W., Mine Y., Immunoenhancing effects of bovine glycomacropeptide and its derivatives on the proliferative response and phagocytic activities of human acrophagelike cells, U937. J. Agric. Food Chem., 2004, 52, 2704–2708.
  • 93. Lim K., Van Calcar S.C., Nelson K.L., Gleason S.T., Ney D.M., Acceptable low-phenylalanine foods and beverages can be made from glycomacropeptide from cheese whey for individuals with PKU. Mol. Genet. Metab., 2007, 92, 176–178.
  • 94. Liukkonen J., Haataja S., Tikkanen K., Kelm S., Finne J., Identifi cation of N-acetylneuraminyl a2–3 poly-N-acteyl lactosamine glycans as the receptors of sialic acid-binding Streptococcus suis strains. J. Biol. Chem., 1992, 267, 21105–21111.
  • 95. Loomes L.M., Uemura K., Childs R.A., Paulson J.C., Rogers G.N., Scudder P.R., Michalski J.C., Housell E.F., Taylor- Robinson D., Feizi T., Erythrocyte receptors for Mycoplasma pneumoniae are silaylated oligosaccharides of II antigen type. Nature, 1984, 306, 560–563.
  • 96. Machnicki M., Zimecki M., Zagulski T., Lactoferrin regulates the release of tumour necrosis factor alpha and interleukin 6 in vivo. Int. J. Exp. Pathol., 1993, 74, 433–439.
  • 97. Manso M.A., Lopez-Fandino R., κ-casein macropeptides from cheese whey: physicochemical, biological, nutritional, and technological features for possible uses. Food Rev. Int., 2004, 20, 329–355.
  • 98. Marshall K., Therapeutic applications of whey protein. Altern. Med. Rev., 2004, 9, 136–156.
  • 99. Marshall S.C., Casein macropeptide from whey. A new product opportunity. Food Res. Quarterly, 1991, 51, 86–91.
  • 100. Masson P.L., Heremans J., Lactoferrin in milk from different species. Comp. Biochem. Physiol., 1971, 39, 119–129.
  • 101. McAbee D.D., Esbensen K., Binding and endocytosis of apoand holo-lactoferrin by isolated rat hepatocytes. J. Biol. Chem., 1991, 266, 23624–23631.
  • 102. McCormick J.A., Markey G.M., Morris T.C., Lactoferrin-inducible monocyte cytotoxicity for K562 cells and decay of natural killer lymphocyte cytotoxicity. Clin. Exp. Immunol., 1991, 83, 154–156.
  • 103. Mencacci A., Cenci E., Boelaert J.R., Mosci P., d’Ostiani C.F., Bistoni F., Romani L., Iron overload alters innate and T helper cell responses to Candida albicans in mice. J. Infect. Dis., 1997, 175, 1467–1476.
  • 104. Mikkelsen T.L., Rasmussen E., Olsen A., Barkhott V., Frøkiær H., Immunogenicity of κ-casein and glycomacropeptide. J. Dairy Sci., 2006, 89, 824–830.
  • 105. Miyazawa K., Mantel C., Lu L., Morrison D.C., Broxmeyer H.E., Lactoferrin- lipopolysaccharide interactions. Effect on lactoferrin binding to monocyte/macrophage-differentiated HL-60 cells. J. Immunol., 1991, 146, 723–729.
  • 106. Monnai M., Otani H., Effect of bovine κ-caseinoglycopeptide on secretion of interleukin-1 family cytokines by P388D1 cells, a line derived from mouse monocyte/macrophage. Milchwissenschaft, 1997, 52, 192–196.
  • 107. Naidu A.S., (Ed.), Lactoferrin: Natural, Multifunctional, Antimicrobial. 2000, CRC Press LLC, USA.
  • 108. Nakajima K., Tamura N., Kobayashi-Hattori K., Yoshida T., Hara-Kudo Y., Ikedo M., Sugita-Konishi Y., Hattori M., Prevention of intestinal infection by glycomacropeptide. Biosci. Biotechnol. Biochem., 2005, 69, 2294–2301.
  • 109. Neeser J.R., Anti-plaque and anticaries agent. United States Patent, 1991a, 4992420.
  • 110. Neeser J.R., Anti-plaque and anticaries agent. United States Patent, 1991b, 4994441.
  • 111. Neeser J.R., Chambaz A., Hoang K.Y., Link-Amster H., Screening for complex carbohydrates inhibiting hemaggluatinations by CFA/I- and CFA/II-expressing enterotoxigenic Escherichia coli strains. FEMS Microbiol. Letters, 1988a, 49, 301–307.
  • 112. Neeser J.R., Chambaz A., del Vedovo S.D., Prigent M.J., Guggenheim B., Specifi c and nonspecifi c inhibition of adhesion of oral actinomyces and streptococci to erythrocytes and polystrene by caseinoglycopeptide derivatives. Inf. Immun., 1988b, 56, 3201–3208.
  • 113. Neeser J.R., Golliard M., Woltz A., Rouvet M., Dillmann M.L., Guggenheim B., In vitro modulation of oral bacterial adhesion to saliva-coated hydroxyapatite beads by milk casein derivatives. Oral Microbiol. Immunol., 1994, 9, 193–201.
  • 114. Neeser J.R., Grafstrom R.C., Woltz A., Brassart D., Fryder V., Guggenheim B., A 23 kda membrane glycoprotein bearing NeuNacalpha2–3Gal beta1–3GalNAc O-linked carbohydrate chains acts as a receptor for Streptococcus sanguis OMZ 9 on human buccal epithelial cells. Glycobiology, 1995, 5, 97–104.
  • 115. Nejad A.S., Kanekanian A., Tatham A., The inhibitory effect of glycomacropeptide on dental erosion. Dairy Sci. Technol., 2009, 89, 233–239.
  • 116. Ney D.M., Gleason S.T., Van Calcar S.C., Nutritional management of PKU with glycomacropeptide from cheese whey. J. Inherit. Metab. Dis., 2009, 32, 32–39.
  • 117. Nielsen P., Tromholt N., Method for production of a kappacasein glycomacropeptide and use of a kappa-casein glycomacropeptide. World Patent, 1994, 9415952.
  • 118. Nishiya K., Horwitz D.A., Contrasting effects of lactoferrin on human lymphocyte and monocyte natural killer activity and antibody- dependent cell-mediated cytotoxicity. J. Immunol., 1982, 129, 2519–2523.
  • 119. Ofek I., Sharon N., Adhesins as lectins: specifi city and role in infection. Curr. Topics Microbiol. Immunol., 1990, 151, 91–113.
  • 120. Ohashi A., Murata E., Yamamoto K., Majima E., Sano E., Le Q.T., Katunuma N., New functions of lactoferrin and β-casein in mammalian milk as cysteine protease inhibitors. Biochem. Biophys. Res. Commun., 2003, 306, 98–103.
  • 121. Okazaki K., Uchida K., Ohana M., Nakase H., Uose S., Inai M., Matsushima Y., Katamura K., Ohmori K., Chiba T., Autoimmune- related pancreatitis is associated with autoantibodies and a Th1/Th2-type cellular immune response. Gastroenterology, 2000, 118, 573–581.
  • 122. Okuda M., Nakazawa T., Yamauchi K., Miyashiro E., Koizumi R., Booka M., Teraguchi S., Tamura Y., Yoshikawa N., Adachi Y., Imoto I., Bovine lactoferrin is effective to suppress Helicobacter pylori colonization in the human stomach: a randomized, double-blind, placebo-controlled study. J. Infect. Chemother., 2005, 11, 265–269.
  • 123. Omata Y., Satake M., Maeda R., Saito A., Shimazaki K., Yamauchi K., Uzuka Y., Tanabe S., Sarashina T., Mikami T., Reduction of the infectivity of Toxoplasma gondii and Eimeria stiedai sporozoites by treatment with bovine lactoferricin. J. Vet. Med. Sci., 2001, 63, 189–190.
  • 124. Otani H., Hata I., Inhibition of proliferative responses of mouse spleen lymphocytes and rabbit Peyer’s patch cells by bovine milk caseins and their digests. J. Dairy Res., 1995, 62, 339–348.
  • 125. Otani H., Horimoto Y., Monnai M., Suppression of interleukin- 2 receptor expression on mouse CD4(+) T cells by bovine κ-caseinoglycopeptide. Biosci. Biotechnol. Biochem., 1996, 60, 1017–1019.
  • 126. Otani H., Monnai M., Inhibition of proliferative responses of mouse spleen lymphocytes by bovine milk κ-casein digests. Food Agri. Immunol., 1993, 5, 219–229.
  • 127. Otani H., Monnai M., Induction of an interleuken-1receptor antagonist-like component produced from mouse GMP biological activities S45 spleen cells by bovine κ-caseinoglycopeptide. Biosci. Biotechnol. Biochem., 1995, 59, 1166–1168.
  • 128. Otani H., Monnai M., Hosono A., Bovine κ-casein as inhibitor of the proliferation of mouse splenocytes induced by lipopolysaccharide stimulation. Milchwissenschaft, 1992, 47, 512–515.
  • 129. Otani H, Monnai M., Kawasaki Y., Kawakami H., Tanimoto M., Inhibition of mitogen-induced proliferative responses of lymphocytes by bovine κ-caseinoglycopeptides having different carbohydrate chains. J. Dairy Res., 1995, 62, 349–357.
  • 130. Pan Y., Lee A., Wan J., Coventry M.J., Michalski W.P., Shiell B., Roginski H., Antiviral properties of milk proteins and peptides. Int. Dairy J., 2006, 16, 1252–1261.
  • 131. Parkkinen A., Rogers G.N., Korhonen T., Dahr W., Finne J., Identifi cation of the O-linked sialyloligosaccharides of glycophorin A as the erythrocyte receptors for S-fi mbriated Escherichia coli. Inf. Immun., 1986, 54, 37–42.
  • 132. Payne K.D., Davidson P.M., Oliver S.P., Infl uence of bovine lactoferrin on the growth of Listeria monocytogenes. J. Food Prot., 1990, 53, 468–472.
  • 133. Petschow B.W., Talbott R.D., Response of Bifi dobacterium species to growth promoters in human and cow milk. Pediatric Res., 1991, 29, 208–213.
  • 134. Pierce A., Colavizza D., Benaissa M., Maes P., Tartar A., Montreul J., Spik G., Molecular cloning and sequence analysis of bovine lactotransferrin. Eur. J. Biochem., 1991, 196, 177–184.
  • 135. Poch M., Bezkorovainy A., Growth-enhancing supplements for various species of the genus Bifi dobacterium. J. Dairy Sci., 1988, 71, 3214–4221.
  • 136. Poch M., Bezkorovainy A., Bovine milk κ-casein trypsin digest is a growth enhancer for the genus Bifi dobacterium. J. Agri. Food Chem., 1991, 39, 73–77.
  • 137. Powell W.L., Jazwinska E., Halliday J.W., Primary iron overload. 1994, in: Iron Metabolism in Health and Disease. 1st Ed. (eds. J.H. Brock, J.W. Halliday, M.J. Pippard, L.W. Powell). pub.W.B. Saunders Co., London, UK, pp. 227–270.
  • 138. Proulx M., Gauthier S.F., Roy D., Effect of casein hydrolysates on the growth of Bifi dobacteria. Le Lait, 1992, 72, 393–404.
  • 139. Qiu J., Hendrixson D.R., Baker E.N., Murphy T.F., St Geme J.W., Plaut A.G., Human milk lactoferrin inactivates two putative colonization factors expressed by Haemophilus infl uenzae. Proc. Natl. Acad. Sci. U.S.A., 1998, 95, 12641–12646.
  • 140. Reiter B., The biological signifi cance of the non-immunoglobulin protective proteins in milk: lysozome, lactoferrin, lactoperoxidase. Dev. Dairy Chem., 1985, 3, 281–336.
  • 141. Roberts A.K., Chierici R., Sawatzki G., Hill M.J., Volpato S., Vigi V., Supplementation of an adapted formula with bovine lactoferrin: 1. Effect on the infant faecal fl ora. Acta Paediatr, 1992, 81, 119–124.
  • 142. Saito H., Miyakawa H., Tamura Y., Potent bactericidal activity of bovine lactoferrin hydrolysate produced by heat treatment at acidic pH. J. Dairy Sci., 1991, 74, 3724–3730.
  • 143. Saito T., Itoh T., Variations and distributions of Oglycosidically linked sugar chains in bovine κ-casein. J. Dairy Sci., 1992, 75, 1768–1774.
  • 144. Saito T., Itoh T., Adachi S., The chemical structure of a tetrasaccharide containing N-acetylglucosamine obtained from bovine colostrum κ-casein. Biochim. Biophys. Acta, 1981, 673, 487–494.
  • 145. Sawatzki G., Rich I.N., Lactoferrin stimulates colony stimulating factor production in vitro and in vivo. Blood Cells, 1989, 15, 371–385.
  • 146. Schengrund C.L., Ringler N.J., Binding of Vibrio cholera toxin and the heat-labile enterotoxin of Escherichia coli to GM1, derivatives of GM1, and nonlipid oligosaccharide polyvalent ligands. J. Biol. Chem., 1989, 264, 13233–13237.
  • 147. Schupbach P., Neeser J.R., Golliard M., Rouvet M., Guggenheim B., Incorporation of caseinoglycomacropeptide and caseinophosphopeptide into the salivary pellicle inhibits adherence of mutans streptococci. J. Dental Res., 1996, 75, 1779–1788.
  • 148. Sekine K., Murakoshi M., Satomi Y., Nishino H., Kakizoe T., Tsuda H., Inhibition of initiation and early stage development of aberrant crypt foci and enhanced natural killer activity in male rats administered bovine lactoferrin concomitantly with azoxymethane. Cancer Lett., 1997, 121, 211–216.
  • 149. Shah N.P., Effects of milk-derived bioactives: an overview. Br. J. Nutr., 2000, 84, S3-S10.
  • 150. Shakibaei M., Frevert U., Dual interaction of the malaria circumsporozoite protein with the low density lipoprotein receptor- related protein (LRP) and heparin sulfate proteoglycans. J. Exp. Med., 1996, 184, 1699–1711.
  • 151. Shin K., Wakabayashi H., Yamauchi K., Teraguchi S., Tamura Y., Kurokawa M., Shiraki K., Effects of orally administered bovine lactoferrin and lactoperoxidase on infl uenza virus infection in mice. J. Med. Microbiol., 2005, 54, 717–723.
  • 152. Siciliano R., Rega B., Marchetti M., Seganti L., Antonini G., Valenti P., Bovine lactoferrin peptidic fragments involved in inhibition of herpes simplex virus type 1 infection. Biochem. Biophys. Res. Commun., 1999, 264, 19–23.
  • 153. Simon P.M., Pharmaceutical oligosaccharides. Drug Discovery Today, 1996, 1, 522–528.
  • 154. Smithers G.W., Regester G.O., Bradford R.S., Pearce R.J., New casein protein products for the food industry: physical, chemical and enzymatic manipulation of milk. Food Aust., 1991, 43, 252–254.
  • 155. Sorrentino S., D’Alessandro A.M., Maras B., Ciccio L.D., D’Andrea G., De Prisco R., Bossa F., Libonati M., Oratore A., Purifi cation of a 76-kDa iron-binding protein from human seminal plasma by affi nity chromatography specifi c for ribonuclease: structural and functional identity with milk lactoferrin. Biochim. Biophys. Acta, 1999, 1430, 103–110.
  • 156. Stan E.Y., Chernikov M.P., On the physiological activity of κ-casein glycomacropeptide. Voprosy Meditsinskoi Khimii, 1979, 25, 348–352.
  • 157. Stan E.Y., Chernikov M.P., Formation of a peptide inhibitor of gastric secretion from rat milk proteins in vivo. Bu ll. Exp. Biol. Med., 1982, 94, 1087–1089.
  • 158. Stan E.Y., Groisman S.D., Krasil’shchikov K.B., Chernikov M.P., Effects of κ-casein glycomacropeptide motility in dogs. Bull. Exp. Biol. Med., 1983, 95, 889–891.
  • 159. Steijns J., Dietary proteins as the source of new health promoting bio-active peptides with special attention to glutamine peptide. Food Tech. Eur., 1996, 3, 80–84.
  • 160. Steijns J.M., Van Hooijdonk A.C., Occurrence, structure, biochemical properties and technological characteristics of lactoferrin. Br. J. Nutr., 2000, 84, S11-S17.
  • 161. Strøm M.B., Haug B.E., Rekdal Ø., Skar M.L., Stensen W., Svendsen J.S., Important structural features of 15-residue lactoferrin derivatives and methods for improvement of antimicrobial activity. Biochem. Cell Biol., 2002, 80, 65–74.
  • 162. Strøm M.B., Rekdal O., Svendsen J.S., Antibacterial activity of 15-residue lactoferricin derivatives. J. Peptide Res., 2000, 56, 265–274.
  • 163. Sugii S., Tsuji T., Binding and hemagglutinating properties of the B Subunit(s) of heat-labile enterotoxin isolated from human enterotoxigenic Escherichia coli. FEMS Microbiol. Letters, 1990, 66, 45–50.
  • 164. Suzuki T., Yamauchi K., Kawase K., Collaborative bacteriostatic activity of bovine lactoferrin with lysozyme against E. coli O111. Agric. Biol. Chem., 1989, 53, 1705–1706.
  • 165. Suzuki Y.A., Lopez V., Lonnerdal B., Mammalian lactoferrin receptors: structure and function. Cell. Molec. Life Sci., 2005, 62, 2560–2575.
  • 166. Suzuki Y., Lonnerdal B., Characterization of mammalian receptors for lactoferrin. Biochem. Cell Biol., 2002, 80, 75–80.
  • 167. Tachezy J., Kulda J., Bahnikova I., Suchan P., Razga J., Schrevel J., Tritrichomonas foetus: iron acquisition from lactoferrin and transferrin. Exp. Parasitol., 1996, 83, 216–228.
  • 168. Tanaka K., Ikeda M., Nozaki A., Kato N., Tsuda H., Saito S., Sekihara H., Lactoferrin inhibits C virus viremia in patients with chronic hepatitis C: a pilot study. Jpn. J. Cancer Res., 1999, 90, 367–371.
  • 169. Tanaka K., Kawabata K., Kohno H., Honjo S., Murakami M., Ota T., Tsuda H., Chemopreventive effect of bovine lactoferrin on 4-nitroquinoline 1-oxide induced tongue carcinogenesis in male F344 rats. Jpn. J. Cancer Res., 2000, 91, 25–33.
  • 170. Teraguchi S., Ozawa K., Yasuda S., Shin K., Fukuwatari Y., Shimamura S., The bacteriostatic effects of orally administered bovine lactoferrin on intestinal Enterobacteriaceae of SPF mice fed bovine milk. Biosci. Biotechnol. Biochem., 1994, 58, 482–487.
  • 171. Teraguchi S., Shin K., Ogata T., Kingaku M., Kaino A., Miyauchi H., Fukuwatari Y., Shimamura S., Orally administered bovine lactoferrin inhibits bacterial translocation in mice fed bovine milk. Appl. Environ. Microbiol., 1995, 61, 4131–4134.
  • 172. Teraguchi S., Wakabayashi H., Kuwata H., Yamauchi K., Tamura Y., Protection against infection by oral lactoferrin: evaluation in animal models. Biometals, 2004, 17, 231–234.
  • 173. Tomita M., Wakabayashi H., Shin K., Yamauchi K., Yaeshima T., Iwatsuki K., Twenty-fi ve years of research on bovine lactoferrin applications. Biochimie, 2009, 91, 52–57
  • 174. Tomita M., Wakabayashi H., Yamauchi K., Teraguchi S., Hayasawa H., Bovine lactoferrin and lactoferricin derived from milk: production and applications. Biochem. Cell Biol., 2002, 80, 109–112.
  • 175. Trif M., Guillen C., Vaughan D.M., Telfer J.M., Brewer J.M., Roseanu A., Brock J.H., Liposomes as possible carriers for lactoferrin in the local treatment of infl ammatory diseases. Exp. Biol. Med., 2001, 226, 559–564.
  • 176. Tran V.D., Baker B.E., Casein IX. Carbohydrate moiety of κ-casein. J. Dairy Sci., 1970, 53, 1009–1012.
  • 177. Tsuda H., Sekine K., Fujita K., Iigo M., Cancer prevention by bovine lactoferrin and underlying mechanisms – a review of experimental and clinical studies. Biochem. Cell Biol., 2002, 80, 131–136.
  • 178. Ushida Y., Sekine K., Kuhara T., Takasuka N., Iigo M., Tsuda H., Inhibitory effects of bovine lactoferrin on intestinal polyposis in the Apc (Min) mouse. Cancer Lett., 1998, 134, 141–145.
  • 179. Van Calcar S.C., MacLeod E.L., Gleason S.T., Etzel M.R., Clayton M.K., Wolff J.A., Ney D.M., Improved nutritional management of phenylketonuria by using a diet containing glycomacropeptide compared with amino acids. Am. J. Clin. Nutr., 2009, 89, 1068–1077.
  • 180. Van Halbeek H., Dorland L., Vliegenthart J.F.G., Fiat A.M., Jolles P., A 360-MHz 1H-NMR study of three oligosaccharides isolated from cow κ-casein. Biochim. Biophys. Acta, 1980, 623, 295–300.
  • 181. Van Heyningen S., Cholera toxin: interaction of subunits with ganglioside GM1. Science, 1974, 183, 656–657.
  • 182. Van Hooijdonk A.C., Kussendrager K.D., Steijns J.M., In vivo antimicrobial and antiviral activity of components in bovine milk and colostrums involved in non-specifi c defence. Br. J. Nut., 2000, 84, S127-S134.
  • 183. Van Hooydonk A.C.M., Olieman C., Hagedoorn H.G., Kinetics of the chymosin-catalyzed proteolysis of κ-casein in milk. Neth. Milk Dairy J., 1984, 38, 207–222.
  • 184. Van Snick J.L., Masson P.L., Heremans J.F., The involvement of lactoferrin in the hyposideremia of acute infl ammation. J. Exp. Med., 1974, 140, 1068–1084.
  • 185. Vasilevskaya L.S., Stan E.Y., Chernikov M.P., Shlygin G.K., Inhibitory action of glycomacropeptide produced on the gastric secretion by various humoral stimulants. Voprosy Pitaniya, 1977, 4, 21–24.
  • 186. Viejo-Diaz M., Andres M.T., Fierro J.F., Modulation of in vitro fungicidal activity of human lactoferrin against Candida albicans by extracellular cation concentration and target cell metabolic activity. Antimicrob. Agents Chemother., 2004, 48, 1242–1248.
  • 187. Wakabayashi H., Kurokawa M., Shin K., Teraguchi S. Tamura Y., Shiraki K., Oral lactoferrin prevents body weight loss and increase cytokine responses during herpes simplex virus type 1 infection of mice. Biosci. Biotechnol. Biochem., 2004a, 68, 537–544.
  • 188. Wakabayashi H., Kuwata H., Yamauchi K., Teraguchi S., Tamura Y., No detectable transfer of dietary lactoferrin or its functional fragments to portal blood in health adult rats. Biosci. Biotechnol. Biochem., 2004b, 68, 853–860.
  • 189. Wakabayashi H., Uchida K., Yamauchi K., Teraguchi S., Hayasawa H., Yamaguchi H., Lactoferrin given in food facilitates dermatophytosis cure in guinea pig models. J. Antimicrob. Chemother., 2000, 46, 595–601.
  • 190. Wakabayashi H., Yamauchi K., Takase M., Lactoferrin research, technology and applications. Int. Dairy J., 2006, 16, 1241–1251.
  • 191. Walzem R.L., Dillard C.J., German J.B., Whey components: millennia of evolution create functionalities for mammalian nutrition: what we know and what we may be overlooking. Crit Rev. Food Sci. Nut., 2002, 42, 353–375.
  • 192. Wang X., Hirmo S., Willen R., Wadstrom T., Inhibition of Helicobacter pylori infection by bovine milk glycoconjugates in a BAlb/ cA mouse model. J Med. Microbiol., 2001, 50, 430–435.
  • 193. Ward P.P., Uribe-Luna S., Conneely O.M., Lactoferrin and host defense. Biochem. Cell Biol., 2002, 80, 95–102.
  • 194. Weinberg E.D., Acquisition of iron and other nutrients in vivo. 1995, in: Virulence Mechanisms of Bacterial Pathogens, 2nd ed. (eds. J. A. Roth, C. A. Bolin, K. A. Brogden, F. C. Minion, M.J. Wannemuehler). American Society for Microbiology, Washington, D.C., USA, pp. 79–93.
  • 195. Whitney R.M., Proteins in milk. 1988, in: Fundamentals of Dairy Chemistry (eds. N.P. Wong, R. Jenness, M. Keeney, E.H. Marth). Van Nostrand Reinhold, New York, USA, pp. 89–92.
  • 196. Yakabe T., Kawakami H., Idota T., Growth simulation agent for bifi dus and lactobacillus. Jpn. Patent, 1994, 7267866.
  • 197. Yamada Y., Amagasaki T., Jacobsen D. W., Green R., Lactoferrin binding by leukemia cell lines. Blood, 1987, 70, 264–270.
  • 198. Yamauchi K., Biologically functional proteins of milk and peptides derived from milk proteins. Bull. Int. Dairy Fed., 1992, 272, 51–58.
  • 199. Yamauchi K., Hiruma M., Yamazaki N., Wakabayashi H., Kuwata H., Teraguchi S., Hayasawa H., Suegara N., Yamaguchi H., Oral administration of bovine lactoferrin for treatment of tinea pedis. A placebo-controlled, double-blind study. Mycoses, 2000, 43, 197–202.
  • 200. Yamauchi K., Tomita M., Giehl T.J., Ellison R.T., Antibacterial activity of lactoferrin and a pepsin-derived lactoferrin peptide fragment. Inf. Immun., 1993, 61, 719–728.
  • 201. Ye X.Y., Wang H.X., Liu F., Ng T.B., Ribonuclease, cell-free translation-inhibitory and superoxide radical scavenging activities of the iron-binding protein lactoferrin from bovine milk. Int. J. Biochem. Cell. Biol., 2000, 32, 235–241.
  • 202. Yoo Y.C., Watanabe R., Koike Y., Mitobe M., Shimazaki K., Watanabe S., Azuma I., Apoptosis in human leukemic cells induced by lactoferricin, a bovine milk protein-derived peptide: involvement of reactive oxygen species. Biochem. Biophys. Res. Commun., 1997, 237, 624–628.
  • 203. Yoo Y.C., Watanabe S., Watanabe R., Bovine lactoferrin and lactoferricin inhibit tumor metastasis in mice. Adv. Exp. Med Biol., 1998, 443, 285–291.
  • 204. Yu R.H., Schryvers A.B., Bacterial lactoferrin receptors: insight from characterizing the Moraxella bovis receptors. Biochem. Cell Biol., 2002, 80, 81–90.
  • 205. Yun S.S., Sugita-Konishi Y., Kumagai S., Yamauchi K., Glycomacropeptide from cheese whey protein concentrate enhances IgA production by lipopolysaccharide-stimulated murine spleen cells. Ann. Sci. Technol., 1996, 67, 458–462.
  • 206. Yvon M., Beucher S., Guilloteau P., Huerou-Luron I.L., Corring T., Effects of caseinomacropeptide (CMP) on digestion regulation. Reprod. Nutr. Dev., 1994, 34, 527–537.
  • 207. Zakharova E.T., Shavlovski M.M., Bass M.G., Gridasova A.A., Pulina M.O., De Filippis V., Beltramini M., Di Muro P., Salvato B., Fontana A., Vasilyev V.B., Gaitskhoki V.S., Interaction of lactoferrin with ceruloplasmin. Arch. Biochem. Biophys., 2000, 374, 222–228.
  • 208. Zhang Y.P., Shapiro P., Fluoride free dental remineralization. World Patent, 1998, 9852524.
Uwagi
PL
Rekord w opracowaniu
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-40fce70b-ef17-4946-a876-30467a1b8f62
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.