PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2009 | 31 | 5 |

Tytuł artykułu

Salicylic acid-mediated alleviation of cadmium toxicity in hemp plants in relation to cadmium uptake, photosynthesis, and antioxidant enzymes

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
To assess the role of salicylic acid (SA) in alleviating cadmium (Cd) toxicity in hemp (Cannabis sativa L.) plants, the growth parameters, Cd accumulation, photosynthetic performance and activities of major antioxidant enzymes were investigated in hemp seedlings treated with 500 µM SA, under 0, 25, 50, and 100 mg Cd kg⁻¹ sands (DW) conditions, respectively. Cd exposure resulted in a small reduction in biomass (12.0–26.9% for root, and 8.7–29.4% for shoot, respectively), indicating hemp plants have innate capacity to tolerant Cd stress. This was illustrated by little inhibition in photosynthetic performance, unchanged malondialdehyde content, and enhancement of superoxide dismutase (SOD) and peroxidases (POD) activities in hemp plants. Cd content in root is 25.0–29.5 times’ higher than that in shoot, suggesting the plant can be classified as a Cd excluder. It is concluded that SA pretreatment counteracted the Cd-induced inhibition in plant growth. The beneficial effects of SA in alleviating Cd toxicity can be attributed to the SA-induced reduction of Cd uptake, improvement of photosynthetic capacity, and enhancement of SOD and POD activities.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

31

Numer

5

Opis fizyczny

p.969-977,fig.,ref.

Twórcy

autor
  • College of Life Sciences, Nanjing Agricultural University, 210095 Nanjing, People's Republic of China
  • The Anui Provincial Key Laboratory of the Resouce Plant Biology, Department of Biology, Huaibei Coal Industry Teachers College, 235000 Huaibei, People's Republic of China
autor
  • College of Life Sciences, Nanjing Agricultural University, 210095 Nanjing, People's Republic of China
autor
  • The Anui Provincial Key Laboratory of the Resouce Plant Biology, Department of Biology, Huaibei Coal Industry Teachers College, 235000 Huaibei, People's Republic of China
autor
  • The Anui Provincial Key Laboratory of the Resouce Plant Biology, Department of Biology, Huaibei Coal Industry Teachers College, 235000 Huaibei, People's Republic of China

Bibliografia

  • Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126. doi: 10.1016/S0076-6879(84)05016-3
  • Alvarez ME (2000) Salicylic acid in the machinery of hypersensitive cell death and disease resistance. Plant Mol Biol 44:429–442. doi:10.1023/A:1026561029533
  • Azevedo Neto AD, Prisco JT, Eneas-Filho J, Abreu CEB, Gomes-Filho E (2006) Effect of salt stress on antioxidative enzymes and lipid peroxidation in leaves and roots of salt-tolerant and saltsensitive maize genotypes. Environ Exp Bot 56:87–94. doi: 10.1016/j.envexpbot.2005.01.008
  • Baker AJM (1987) Metal tolerance. New Phytol 106:93–111
  • Barcelo J, Poschenrieder C (1990) Plant water relations as affected by heavy metal Stress: A review. J Plant Nutr 13:1–37. doi: 10.1080/01904169009364057
  • Beauchamp C, Fridovich I (1971) Superoxide dismutase: Improved assays and an assay applicable to acrylamide gels. Anal Biochem 44:276–287. doi:10.1016/0003-2697(71)90370-8
  • Borsani O, Valpuesta V, Botella MA (2001) Evidence for a role of salicylic acid in the oxidative damage generated by NaCl and osmotic stress in Arabidopsis seedlings. Plant Physiol 126:1024–1030. doi:10.1104/pp.126.3.1024
  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254. doi:10.1016/0003-2697(76)90527-3
  • Chaoui A, Mazhoudi S, Ghorbal M, El Ferjani E (1997) Cadmium and zinc induction of lipid peroxidation and effects on antioxidant enzyme activities in bean (Phaseolus vulgaris L.). Plant Sci 127:139–147. doi:10.1016/S0168-9452(97)00115-5
  • Chartzoulakisa K, Patakasb A, Kofidisc G, Bosabalidisc A, Nastoub A (2002) Water stress affects leaf anatomy, gas exchange, water relations and growth of two avocado cultivars. Sci Hortic (Amsterdam) 95:39–50. doi:10.1016/S0304-4238(02)00016-X
  • Chen Z, Iyer S, Caplan A, Klessig DF, Fan B (1997) Differential accumulation of salicylic acid and salicylic acid-sensitive catalase in different rice tissues. Plant Physiol 114:193–201. doi: 10.1104/pp.114.1.265
  • Chien H, Wang J, Lin C, Kao C (2001) Cadmium toxicity of rice leaves is mediated through lipid peroxidation. Plant Growth Regul 33:205–213. doi:10.1023/A:1017539616793
  • Choudhury S, Panda SK (2004) Role of salicylic acid in regulating cadmium induced oxidative stress in Oryza sativa. Bulg J Plant Physiol 30:95–110
  • Citterio S, Santagostino A, Fumagalli P, Prato N, Ranalli P, Sgorbati S (2003) Heavy metal tolerance and accumulation of Cd, Cr and Ni by Cannabis sativa L. Plant Soil 256:243–252. doi:10.1023/ A:1026113905129
  • Dahmani-Muller H, van Oort F, Gélie B, Balabane M (2000) Strategies of heavy metal uptake by three plant species growing near a metal smelter. New Phytol 109:231–238
  • Dat JF, Foyer CH, Scott IM (1998a) Changes in salicylic acid and antioxidants during induced thermo tolerance in mustard seedlings. Plant Physiol 118:1455–1461. doi:10.1104/pp.118.4.1455
  • Dat JF, Lopez-Delgado H, Foyer CH, Scott IM (1998b) Parallel changes in H₂O₂ and catalase during thermo tolerance induced by salicylic acid or heat acclimation in mustard seedlings. Plant Physiol 116:1351–1357. doi:10.1104/pp.116.4.1351
  • De Filippis LF, Ziegler H (1993) Effect of sublethal concentrations of zinc, cadmium and mercury on the photosynthetic carbon reduction cycle of Euglena. J Plant Physiol 142:167–172
  • Drazic G, Mihailovic N (2005) Modification of cadmium toxicity in soybean seedlings by salicylic acid. Plant Sci 168:511–517. doi: 10.1016/j.plantsci.2004.09.019
  • Dražić G, Mihailović N, Lojić M (2006) Cadmium accumulation in Medicago sativa seedlings treated with salicylic acid. Biol Plant 50:239–244. doi:10.1007/s10535-006-0013-5
  • Drazkiewicz M, Tukendorf A, Baszynski T (2003) Age-dependent response of maize leaf segments to cadmium treatment: effect on chlorophyll fluorescence and phytochelatin accumulation. J Plant Physiol 160:247–254. doi:10.1078/0176-1617-00558
  • Durner J, Shah J, Klessig DF (1997) Salicylic acid and disease resistance in plants. Trends Plant Sci 2:266–274. doi:10.1016/ S1360-1385(97)86349-2
  • Durnford DG, Price JA, McKim SM, Sarchfield ML (2003) Light harvesting complex gene expression is controlled by both transcriptional and post-transcriptional mechanisms during photoacclimation in Chlamydomonas reinhardtii. Physiol Plant 118:193–205. doi:10.1034/j.1399-3054.2003.00078.x
  • Ekmekc¸i Y, Tanyolac¸ D, Ayhan B (2008) Effects of cadmium on antioxidant enzyme and photosynthetic activities in leaves of two maize cultivars. J Plant Physiol 165:600–611. doi:10.1016/j.jplph.2007.01.017
  • Foyer C, Noctor G (2005) Oxidant and antioxidant signalling in plants: a re-evaluation of the concept of oxidative stress in a physiological context. Plant Cell Environ 28:1056–1071. doi: 10.1111/j.1365-3040.2005.01327.x
  • Gallego S, Benavides M, Tomaro M (1996) Effect of heavy metal ion excess on sunflower leaves: evidence for involvement of oxidative stress. Plant Sci 121:151–159. doi:10.1016/S0168-9452(96)04528-1
  • Greger M, Ogren E (1991) Direct and indirect effects of Cd²⁺ on photosynthesis in sugar beet (Beta vulgaris). Physiol Plant 83:129–135. doi:10.1111/j.1399-3054.1991.tb01291.x
  • Guo B, Liang YC, Zhu YG, Zhao FJ (2007) Role of salicylic acid in alleviating oxidative damage in rice roots (Oryza sativa) subjected to cadmium stress. Environ Pollut 147:743–749. doi: 10.1016/j.envpol.2006.09.007
  • Guo B, Liang Y, Zhu Y (2009) Does salicylic acid regulate antioxidant defense system, cell death, cadmium uptake and partitioning to acquire cadmium tolerance in rice? J Plant Physiol 166:20–31. doi:10.1016/j.jplph.2008.01.002
  • Hall JL (2002) Cellular mechanisms for heavy metal detoxification and tolerance. J Exp Bot 53:1–11. doi:10.1093/jexbot/53.366.1
  • Horvath G, Droppa M, Oraveez A, Raskin V, Marder JB (1996) Formation of the photosynthetic apparatus during greening of cadmium poisoned barley leaves. Planta 199:238–243. doi: 10.1007/BF00196564
  • Hura T, Hura K, Grzesiak M, Rzepka A (2007) Effect of long-term drought stress on leaf gas exchange and fluorescence parameters in C₃ and C₄ plants. Acta Physiol Plant 29:103–113. doi: 10.1007/s11738-006-0013-2
  • Janda T, Szalai G, Tari I, Paldi E (1999) Hydroponic treatment with salicylic acid decreases the effects of chilling in maize (Zea mays L.) plants. Planta 208:175–180. doi:10.1007/s004250050547
  • Kang HM, Saltveit M (2002) Chilling tolerance of maize, cucumber and rice seedling leaves and roots are differentially affected by salicylic acid. Physiol Plant 115:571–576. doi:10.1034/j.1399-3054.2002.1150411.x
  • Klessig DF, Malamy J (1994) The salicylic acid signal in plants. Plant Mol Biol 26:1439–1458. doi:10.1007/BF00016484
  • Krantev A, Yordanova R, Janda T, Szalai G, Popova L (2008) Treatment with salicylic acid decreases the effect of cadmium on photosynthesis in maize plants. J Plant Physiol 165:920–931. doi:10.1016/j.jplph.2006.11.014
  • Li HS (2000) Principles and techniques of plant physiological biochemical experiment. Higher Education Press, Beijing, pp 260–263
  • Liao YC, Chang Chien SW, Wang MC, Shen Y, Hung PL, Das B (2006) Effect of transpiration on Pb uptake by lettuce and on water soluble low molecular weight organic acids in rhizosphere. Chemosphere 65:343–351. doi:10.1016/j.chemosphere.2006.02.010
  • Lichtenthaler HK (1987) Chlorophylls and carotenoids: pigments of photosynthetic membranes. Methods Enzymol 148:350–382. doi:10.1016/0076-6879(87)48036-1
  • Lichtenthaler HK, Miehe JA (1997) Fluorescence imaging as a diagnostic tool for plant stress. Trends Plant Sci 2:316–320. doi: 10.1016/S1360-1385(97)89954-2
  • Linger P, Müssig J, Fischer H, Kobert J (2002) Industrial hemp (Cannabis sativa L.) growing on heavy metal contaminated soil: fibre quality and phytoremediation potential. Ind Crops Prod 16:33–42. doi:10.1016/S0926-6690(02)00005-5
  • Linger P, Ostwald A, Haensler J (2005) Cannabis sativa L growing on heavy metal contaminated soil: growth, cadmium uptake and photosynthesis. Biol Plant 49:567–576. doi:10.1007/s10535-005-0051-4
  • Lozano-Rodriguez E, Hernàndez L, Bonay P, Carpena-Ruiz R (1997) Distribution of cadmium in shoot and root tissues of maize and pea plants: physiological disturbances. J Exp Bot 48:123–128. doi:10.1093/jxb/48.1.123
  • Maxwell K, Johnson GN (2000) Chlorophyll fluorescence—a practical guide. J Exp Bot 51:659–668. doi:10.1093/jexbot/51.345.659
  • Metwally A, Finkemeier I, Georgi M, Dietz KJ (2003) Salicylic acid alleviates the cadmium toxicity in barley seedlings. Plant Physiol 132:272–281. doi:10.1104/pp.102.018457
  • Metwally A, Safronova VI, Belimov AA, Dietz KJ (2005) Genotypic variation of the response to cadmium toxicity in Pisum sativum L. J Exp Bot 56:167–178
  • Mishra A, Choudhuri MA (1999) Effects of salicylic acid on heavy metal-induced membrane deterioration mediated lipoxygenase in rice. Biol Plant 42:409–415. doi:10.1023/A:1002469303670
  • Mobin M, Khan NA (2007) Photosynthetic activity, pigment composition and antioxidative response of two mustard (Brassica juncea) cultivars differing in photosynthetic capacity subjected to cadmium stress. J Plant Physiol 164:601–610. doi:10.1016/j. jplph.2006.03.003
  • Novák V, Vidovič J (2003) Transpiration and nutrient uptake dynamics in maize (Zea mays L.). Ecol Modell 166:99–107. doi: 10.1016/S0304-3800(03)00102-9
  • Pál M, Szalai G, Horváth E, Janda T, Páldi E (2002) Effect of salicylic acid during heavy metal stress. Acta Biol Szeged 46:119–120
  • Pál M, Leskó K, Janda T, Páldi E, Szalai G (2007) Cadmium-induced changes in the membrane lipid composition of maize plants. Cereal Res Commun 35:1631–1642. doi:10.1556/CRC.35. 2007.4.10
  • Putter J (1974) Peroxidases. In: Bergmeyer HU (ed) Methods of enzymatic analysis: II. Academic Press, New York, pp 685–690
  • Radwan DEM, Fayez AK, Mahmoud SY, Hamad A, Lu GQ (2006) Salicylic acid alleviates growth inhibition and oxidative stress caused by zucchini yellow mosaic virus infection in Cucurbita pepo leaves. Physiol Mol Plant Pathol 69:172–181. doi: 10.1016/j.pmpp.2007.04.004
  • Rai VK, Sharma SS, Sharma S (1986) Reversal of ABA-induced stomatal closure by phenolic compounds. J Exp Bot 37:129–134. doi:10.1093/jxb/37.1.129
  • Salt DE, Prince RC, Pickering IJ, Raskin I (1995) Mechanisms of cadmium mobility and accumulation in Indian mustard. Plant Physiol 109:1427–1433
  • Sandalio LM, Dalurzo HC, Gómez M, Romero-Puertas MC, del Rio LA (2001) Cadmium-induced changes in the growth and oxidative metabolism of pea plant. J Exp Bot 52:2115–2126
  • Schützendübel A, Polle A (2002) Plant responses to abiotic stresses: heavy metal-induced oxidative stress and protection by mycorrhization. J Exp Bot 53:1351–1365. doi:10.1093/jexbot/53. 372.1351
  • Senaratna T, Touchell D, Bunns E, Dixon K (2000) Acetyl salicylic acid (aspirin) and salicylic acid induce multiple stress tolerance in bean and tomato plants. Plant Growth Regul 30:157–161. doi: 10.1023/A:1006386800974
  • Sharma SS, Dietz KJ (2006) The significance of amino acids and amino acid-derived molecules in plant response and adaptation to heavy metal stress. J Exp Bot 57:711–726. doi:10.1093/jxb/erj073
  • Sharma YK, Leon J, Raskin I, Davis KR (1996) Ozone-induced responses in Arabidopsis thaliana—the role of salicylic acid in the accumulation of defence-related transcripts and induced resistance. Proc Natl Acad Sci USA 93:5099–5104. doi:10.1073/pnas.93.10.5099
  • Siedlecka A, Krupa Z (2002) Functions of enzymes in heavy metal treated plants. In: Prasad MNV, Kazimierz S (eds) Physiology and biochemistry of metal toxicity and tolerance in plants. Kluwer, The Netherlands, pp 314–317
  • Somashekaraiah BV, Padmaja K, Prasad ARK (1992) Phytotoxicity of cadmium ions on germinating seedlings of mung bean (Phaseolus vulgaris): involvement of lipid peroxides in chlorophyll degradation. Physiol Plant 85:85–89. doi:10.1111/j.1399-3054.1992.tb05267.x
  • Sudhakar C, Lakshmi A, Giridarakumar S (2001) Changes in the antioxidant enzymes efficacy in two high yielding genotypes of mulberry (Morus alba L.) under NaCl salinity. Plant Sci 161:613–619. doi:10.1016/S0168-9452(01)00450-2
  • Tani FH, Barrington S (2005) Zinc and copper uptake by plants under two transpiration rates Part I. Wheat (Triticum aestivum L.). Environ Pollut 138:538–547
  • Tasgin E, Attici O, Nalbantogly B (2003) Effect of salicylic acid and cold on freezing tolerance in winter wheat leaves. Plant Growth Regul 41:231–236. doi:10.1023/B:GROW.0000007504.41476.c2
  • Vaillant N, Monnet F, Hitmi A, Sallanon H, Coudret A (2005) Comparative study of responses in four Datura species to a zinc stress. Chemosphere 59:1005–1013. doi:10.1016/j.chemosphere. 2004.11.030
  • Vaŕadi G, Polyańka H, Darkó È, Lehoczki E (2003) Atrazine resistance entails a limited xanthophylls cycle activity, a lower PS II efficiency and altered pattern of excess excitation dissipation. Physiol Plant 118:47–56. doi:10.1034/j.1399-3054. 2003.00089.x
  • Venendaal R, Jorgensen U, Foster CA (1997) European energy crops: a synthesis. Biomass Bioenergy 13:147–185. doi:10.1016/S0961-9534(97)00029-9
  • Yang XE, Long XX, Ye HB, He ZL, Calvert DV, Stoffella PJ (2004) Cadmium tolerance and hyperaccumulation in a new Znhyperaccumulating plant species (Sedum alfredii Hance). Plant Soil 259:181–189. doi:10.1023/B:PLSO.0000020956.24027.f2
  • Zawoznik MS, Groppa MD, Tomaro ML, Benavides MP (2007) Endogenous salicylic acid potentiates cadmium-induced oxidative stress in Arabidopsis thaliana. Plant Sci 173:190–197. doi: 10.1016/j.plantsci.2007.05.004

Uwagi

Rekord w opracowaniu

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-40ec90d8-4856-4354-a958-ca880047a250
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.