PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Czasopismo

2016 | 160 | 07 |

Tytuł artykułu

Zastosowanie regionu ITS1/2 rDNA i 18S rDNA do badania mykobioty gleby leśnej

Treść / Zawartość

Warianty tytułu

EN
Use of ITS1/2 rDNA and 18S rDNA in studies of the forest soil mycobiota

Języki publikacji

PL

Abstrakty

EN
The aim of the studies was to check the usefulness of ITS1/2 rDNA and 18S rDNA regions in the molecular investigation of forest soil microbiota structure. Soil studied, originated from a 1−year−old plantation and a 40−year old stand of Scots pine located in Bierzwnik and Międzychów forest districts located 200 km apart. The hypothesis assumed that both approaches lead to the discovery of abundant microbiota communities with different structures and with rare common species. The environmental DNA was extracted with a Power Soil ® DNA Isolation Kit from two soil samples in each site. The ITS1/2 rDNA was amplified with specific primers ITS1 and ewfitsrev 1, and 18S rDNA with universal primers NS1 and NS2. PCR products were cloned into pGEM−T Easy. Inserts were primarily selected in blue/white screening on a X−gal medium. Representative clones were further selected in two separate RFLP analyses with HhaI and BsuRI restriction enzymes. Representative clones purified and sequenced using the Sanger Method in the DNA Research Centre (Poznań). Each sequence was identified to the lowest taxonomic rank. Ninety to 233 clones with DNA of 5−44 taxa including 3−37 taxa of fungi were obtained from 4 samples of soil. After application of ITS1/2 rDNA and 18S rDNA, the fungal DNA was detected respectively in 89,60−100,00% and 11,77−64,8% clones and the number of fungal species detected was respectively 12−37 and 3−19. Fungi were represented by four orders: Chytridiomycota, Zygomycota, Ascomycota and Basidiomycota. Both primers also amplified also DNA of other organisms (mostly from Animalia and Protista Kingdom) represented by 0−9 taxa. If compared, the application of forest soil microbiota structure with ITS1/2 rDNA and 18S rDNA led to detect a lower abundance of fungi and a bigger abundance of other organisms. Considering the higher number of clones and taxa recognized, the region of ITS1/2 rDNA was more effective in the studies of the soil microbiota structure. The region of 18S rDNA was efficient in local detection of Chytridiomycota and Zygomycota and of rare species of fungi from Ascomycota and Basidiomycota. Despite the deficiency of NCBI database the use of the 18S rDNA region in studies on fungal community the region should be included in molecular studies of fungal diversity. It is concluded that studies on the biodiversity of soil microorganisms need the application of a few independent methods of detection and identification.

Wydawca

-

Czasopismo

Rocznik

Tom

160

Numer

07

Opis fizyczny

s.564-572,rys.,tab.,bibliogr.

Twórcy

  • Katedra Fitopatologii Leśnej, Uniwersytet Przyrodniczy w Poznaniu, ul.Wojska Polskiego 71c, 60-625 Poznań
autor
  • Katedra Fitopatologii Leśnej, Uniwersytet Przyrodniczy w Poznaniu, ul.Wojska Polskiego 71c, 60-625 Poznań

Bibliografia

  • Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. 1990. Basic Local Alignment Search Tool. Journal of Molecular Biology 215 (3): 403-10.
  • Anderson I. C., Campbell C. D., Prosser J. I. 2003. Potential bias of fungal 18S rDNA and internal transcribed spacer polymerase chain reaction primers for estimating fungal biodiversity in soil. Environmental Microbiology 5 (1): 36-47.
  • Bertini L., Amicucci A., Agostini D., Polidori E., Potenza L., Guidi Ch., Stocchi V. 1999. A new pair of primers designed for amplification of the ITS region in Tuber species. FEMS Microbiology Letters 173 (1): 239-245.
  • Dynowska M., Ejdys E. 2011. Mikologia laboratoryjna. Przygotowanie materiału badawczego i diagnostyka. Wydawnictwo Uniwersytetu Warmińsko-Mazurskiego, Olsztyn.
  • Filion M., Hamelin R. C., Bernier L., St-Arnau M. 2004. Molecular Profiling of Rhizosphere Microbial Communities Associated with Healthy and Diseased Black Spruce (Picea mariana) Seedlings Grown in a Nursery. Applied and Environmental Microbiology 70 (6): 3541-3551.
  • Frąc M., Jezierska-Tyc S. 2010. Różnorodność mikroorganizmów środowiska glebowego. Postępy Mikrobiologii 40 (1): 47-58.
  • Gao Z., Li B., Zheng C., Wang G. 2008. Molecular Detection of Fungal Communities in the Hawaiian Marine Sponges Suberites zeteki and Mycale armata. Applied and Environmental Microbiology 74 (19): 6091-6101.
  • Gollotte A., van Tuinen D., Atkinson D. 2004. Diversity of arbuscular mycorrhizal fungi colonising roots of the grass species Agrostis capillaris and Lolium perenne in a field experiment. Mycorrhiza 14: 111-117.
  • Hagn A., Pritsch K., Ludwig W., Schloter M. 2003. Theoretical and Practical Approaches to Evaluate Suitable Primer Sets for the Analysis of Soil Fungal Communities. Acta Biotechnologica 23 (4): 373-381.
  • Helgason T., Fitter A. H., Young J. P. W. 1999. Molecular diversity of arbuscular mycorrhizal fungi colonising Hyacinthoides non-scripta (bluebell) in a seminatural woodland. Molecular Ecology 8: 659-666.
  • Hempel S., Renker C., Buscot F. 2007. Differences in the species composition of arbuscular mycorrhizal fungi in spore, root and soil communities in a grassland ecosystem. Environmental Microbiology 9: 1930-1938.
  • Hoshino Y. T. 2012. Molecular Analyses of Soil Fungal Community – Methods and Applications. W: Soriano M. C. H. [red.]. Soil Health and Land Use Management: 279-304.
  • Ihrmark K., Bödeker I. T., Cruz-Martinez K., Friberg H., Kubartová A., Schenck J., Strid Y., Stenlid J., Brandström-Durling M., Clemmensen K. E., Lindahl B. D. 2012. New primers to amplify the fungal ITS2 region-evaluation by 454-sequencing of artificial and natural communities. FEMS Microbiology Ecology 82 (3): 666-677.
  • Kirk P. M., Cannon P. F., Minter D. W., Stalpers J. A. 2008. Ainsworth & Bisby’s Dictionary of Fungi. 10th ed. CAB International, Europe, UK.
  • Kubartová A., Ottosson A., Dahlberg E., Stenlid J. 2012. Patterns of fungal communities among and within decaying logs, revealed by 454 sequencing. Molecular Ecology 21: 4514-4532.
  • Kwaśna H., Bateman G. L., Ward E. 2008. Determining species diversity of microfungal communities in forest tree roots by pure-culture isolation and DNA sequencing. Applied Soil Ecology 40: 44-56.
  • Lee J., Lee S., Young J. P. W. 2008. Improved PCR primers for the detection and identification of arbuscular mycorrhizal fungi. FEMS Microbiology Ecology 65: 339-349.
  • Pivato B., Mazurier S., Lemanceau P., Siblot S., Berta G., Mougel C., van Tuinen D. 2007. Medicago species affect the community composition of arbuscular mycorrhizal fungi associated with roots. New Phytologist 176: 197-210.
  • Schaefer M., Schauermann J. 1990. The soil fauna of beech forests: comparison between a mull and a moder soil. Pedobiologia 34: 299-314.
  • Seifert K. A., Samson R. A., deWaard J. R., Houbraken J., Levesque C., Moncalvo J. M., Louis-Seize G., Hebert P. D. 2007. Prospects for fungus identification using CO1 DNA barcodes, with Penicillium as a test case. Proceedings of the National Academy of Sciences 104: 3901-3906.
  • Singh P., Raghukumar Ch., Verma P., Shouche Y. 2012. Assessment of fungal diversity in deep-sea sediments by multiple primer approach. World Journal of Microbiology and Biotechnology 28: 659-667.
  • Torvsik V. L. 1980. Isolation of bacterial DNA from soil. Soil Biology & Biochemistry 12: 15-21.
  • Warcup J. H. 1950. The soil-plate method for isolation of fungi from soil. Nature 166: 117-118.
  • Warcup J. H. 1955. Isolation of fungi from hyphae present in soil. Nature 175: 953-954.
  • Wardle D. A., Bardgett R. D., Klironomos J. A. N., Setälä H., van der Putten W. H., Wall D. H. 2004. Ecological linkages between aboveground and belowground biota. Science 304 (5677): 1629-1633.
  • White T. J., Bruns T., Lee S., Taylor J. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. W: Innis M. A., Gelfand D. H., Sninsky J. J., White T. J. [red.]. PCR Protocols: a guide to methods and applications. Academic Press, New York, USA. 315-322.
  • Wubet T., Weiß M., Kottke I., Teketay D., Oberwinkler F. 2006. Phylogenetic analysis of nuclear small subunit rDNA sequences suggests that the endangered African Pencil Cedar, Juniperus procera, is associated with distinct members of Glomeraceae. Mycological Research 110: 1059-1069.
  • Zhao P., Zhuang W-Y. 2011. Evaluation of ITS region as a possible DNA barcode for the genus Lachnum (Helotiales). Mycosystema 30 (6): 932-937.
  • Zijlstra J. D., Van’t Hof P., Baar J., Verkley G. J. M., Summerbell R. C., Paradi I., Braakhekke W. G., Berendse F. 2005. Diversity of symbiotic root endophytes of the Helotiales in ericaceous plants and the grass, Deschampsia flexuosa. Studies in Mycology 53: 147-162.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-4046d55b-d9dc-4631-b55e-58ebf30431f2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.