PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2014 | 60 | 2 |

Tytuł artykułu

The role of toll-like receptor agonists in the immunotherapy of leishmaniosis. An update and proposal for a new form of anti-leishmanial therapy

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The use of toll-like receptor agonists in immunotherapy is a new approach in the prevention of immunosuppression during fatal Leishmania parasite infection. The objective of such immunotherapy is to activate specific cell-mediated immune responses, macrophage activation and antigen-responsive inflammation, to kill intracellular amastigotes. Toll-like receptor agonist-based treatment in immunocompetent hosts can be effective either by selective use of the agonists alone or in combination with the anti-leishmanial drug stibanate. Recent investigations suggest that toll-like receptor signal pathways constitute a possible new mode of anti-leishmanial treatment. This article describes the prospect of toll-like receptor – mediated signal pathways in the immunotherapy of cutaneous and visceral leishmaniosis, as well as post kala-azar dermal leishmaniosis (PKADL), a skin-sequel of visceral infection. Suitable synthetic agonists need to be developed for toll-like receptors to overcome immunosuppression.

Wydawca

-

Rocznik

Tom

60

Numer

2

Opis fizyczny

p.75-82,fig.,ref.

Twórcy

autor
  • Department of Microbiology and Immunology, Saint James School of Medicine (Anguilla Campus), Albert Lake Drive, The Quarter, A-I-2640, P.O.Box 318, Anguilla
  • Department of Microbiology and Immunology, Saint James School of Medicine (Anguilla Campus), Albert Lake Drive, The Quarter, A-I-2640, P.O.Box 318, Anguilla
  • Storm Eye Institute, Medical University of South Carolina, 171 Ashley Avenue, Charleston, South Carolina 29425, USA

Bibliografia

  • [1] Takeuchi O., Akira S. 2001. Toll-like receptors; their physiological role and signal transduction system. International Immunopharmacology 1: 625-635.
  • [2] Chaudhary P.M., Ferguson C., Nguyen O., Massa H.F., Eby M., Jasmin A., Trask B.J., Hood L., Nelson P.S. 1998. Cloning and characterization of two Toll/Interleukin-1 receptor-like genes TIL3 and TIL4: evidence for a multi-gene receptor family in humans. Blood 91: 4020-4027.
  • [3] Zhu J., Mohan C. 2010. Toll-like receptor signaling pathways-therapeutic opportunities. Mediators of Inflammation 2010, ID 781235.
  • [4] Okun E., Griffioen K.J., Mattson M.P. 2011.Toll-like receptor signaling in neural plasticity and disease. Trends in Neurosciences 34: 269-281.
  • [5] Olson J.K., Miller S.D. 2004. Microglia initiate central nervous system innate and adaptive immune responses through multiple TLRs. Journal of Immunology 173: 3916-3924.
  • [6] Hanke M.L., Kielian T. 2011.Toll-like receptors in health and disease in the brain: mechanisms and therapeutic potential. Clinical Science (London) 121: 367-387.
  • [7] Kaul D., Habbel P., Derkow K., Kruger C.,Franzoni E.,Wulczyn F.G.,Bereswill S., Nitsch R., Schott E., Veh R., Naumann T., Lehnardt S. 2012. Expression of Toll-like receptors in the developing brain. PLoS One 7: e37767.
  • [8] Gangloff M., Weber A.N., Gibbard R.J., Gay N.J. 2003. Evolutionary relationships, but functional differences, between the Drosophila and human Tolllike receptor families. Biochemical Society Transactions 31(Pt 3): 659-663.
  • [9] Tanji T., Ip Y.T. 2005. Regulators of the Toll and Imd pathways in the Drosophila innate immune response. Trends in Immunology 26:193-198.
  • [10] Kawai T., Akira S. 2006.TLR signaling. Cell Death and Differentiation 13: 816-825.
  • [11] Thoma-Uszynski S., Stenger S., Takeuchi O., Ochoa M.T., Engele M.,Sieling P.A., Barnes P.F., Rollinghoff M., Bolcskei P.L., Wagner M., Akira S., Norgard M.V., Belisle J.T., Godowski P.J., Bloom B.R., Modlin R.L. 2001. Induction of direct antimicrobial activity through mammalian toll-like receptors. Science 291:1544-1547.
  • [12] Valkov E., Stamp A., Dimaio F., Baker D., Verstak B., Roversi P., Kellie S., Sweet M.J., Mansell A., Gay N.J., Martin J.L., Kobe B. 2011. Crystal structure of Toll-like receptor adaptor MAL/TIRAP reveals the molecular basis for signal transduction and disease protection. Proceedings of the National Academy of Sciences 108:14879-14884.
  • [13] Schilling D., Thomas K., Nixdorff K., Vogel S.N., Fenton M.J. 2002.Toll-like receptor 4 and Toll-IL-1 receptor domain-containing adapter protein (TIRAP)/myeloid differentiation protein 88 adapterlike (Mal) contribute to maximal IL-6 expression in macrophages. Journal of Immunology 169: 5874-5880.
  • [14] Martin M.U., Wesche H. 2002. Summary and comparison of the signaling mechanisms of the Toll/interleukin-1 receptor family. Biochimica et Biophysica Acta 1592: 265-280.
  • [15] Snell J.C., Chernyshev O., Gilbert D.L., Colton C.A. 1997. Polyribonucleotides induce nitric oxide production by human monocyte-derived macrophages. Journal of Leukocyte Biology 62: 369-373.
  • [16] Heitmeier M.R., Scarim A.L., Corbett J.A. 1998. Double-stranded RNA-induced inducible nitric-oxide synthase expression and interleukin-1 release by murine macrophages requires NF-kappaB activation. Journal of Biological Chemistry 273:15301-15307.
  • [17] Tili E., Croce C.M., Michaille J.J. 2009. miR-155: on the crosstalk between inflammation and cancer. International Reviews of Immunology 28: 264-284.
  • [18] Alvar J., Velez I.D., Bern C., Herrero M., Desjeux P., Cano J., Jannin J., den Boer M. 2012. Leishmaniasis worldwide and global estimates of its incidence. PLoS One 7: e35671.
  • [19] de Brito M.E., Andrade M.S., Dantas-Torres F., Rodrigues E.H., Cavalcanti Mde P., de Almeida A.M., Brandao-Filho S.P. 2012. Cutaneous leishmaniasis in northeastern Brazil: a critical appraisal of studies conducted in State of Pernambuco. Revista da Sociedade Brasileira de Medicina Tropical 45: 425-429.
  • [20] Llambrich A., Zaballos P., Terrasa F., Torne I., Puig S., Malvehy J. 2009. Dermoscopy of cutaneous leishmaniasis. British Journal of Dermatology 160: 756-761.
  • [21] Bacellar O., Faria D., Nascimento M., Cardoso T.M., Gollob K.J., Dutra W.O., Scott P., Carvalho E.M. 2009. Interleukin 17 production among patients with American cutaneous leishmaniasis. Journal of Infectious Diseases 200: 75-78.
  • [22] Castellano L.R., Filho D.C., Argiro L., Dessein H., Prata A., Dessein A., Rodrigues V. 2009. Th1/Th2 immune responses are associated with active cutaneous leishmaniasis and clinical cure is associated with strong interferon-gamma production. Human Immunology 70: 383-390.
  • [23] Von Stebut E. 2007. Immunology of cutaneous leishmaniasis: the role of mast cells, phagocytes and dendritic cells for protective immunity. European Journal of Dermatology 17: 115-122.
  • [24] Vargas-Inchaustegui D.A., Tai W., Xin L., Hogg A.E., Corry D.B., Soong L. 2009. Distinct roles for MyD88 and Toll-like receptor 2 during Leishmania braziliensis infection in mice. Infection and Immunity 77: 2948-2956.
  • [25] Tuon F.F., Fernandes E.R., Duarte M.I., Amato V.S. 2012. Expression of TLR2 and TLR4 in lesions of patients with tegumentary American leishmaniasis. Revista do Instituto de Medicina Tropical de São Paulo 54:159-163.
  • [26] Cezario G.A., de Oliveira L.R., Peresi E., Nicolete V.C., Polettini J., de Lima C.R., Gatto M., Calvi S.A. 2011. Analysis of the expression of toll-like receptors 2 and 4 and cytokine production during experimental Leishmania chagasi infection. Memórias do Instituto Oswaldo Cruz 106: 573-583.
  • [27] Schnorr D., Muniz A.C., Passos S., Guimaraes L.H., Lago E.L., Bacellar O., Glesby M.J., Carvalho E.M. 2012. IFN-gamma production to leishmania antigen supplements the leishmania skin test in identifying exposure to L. braziliensis infection. PLoS Neglected Tropical Diseases 6: e1947.
  • [28] Da-Cruz A.M., de Oliveira M.P., De Luca P.M., Mendonca S.C., Coutinho S.G. 1996. Tumor necrosis factor-alpha in human american tegumentary leishmaniasis. Memórias do Instituto Oswaldo Cruz 91: 225-229.
  • [29] Raman V.S., Bhatia A., Picone A., Whittle J., Bailor H.R., O’Donnell J., Pattabhi S., Guderian J.A., Mohamath R., Duthie M.S., Reed S.G. 2010. Applying TLR synergy in immunotherapy: implications in cutaneous leishmaniasis. Journal of Immunology 185: 1701-1710.
  • [30] Bhakuni V., Kulkarni S., Singh U.K.,Levy H.B.,Maheshwari R.K. 1999. Immunochemotherapy for Leishmania donovani infection in golden hamsters: combinatorial action of polyICLC plus Larginine and sodium stibogluconate (Stibanate). Journal of Interferon and Cytokine Research 10:1103-1106.
  • [31] Singh R.K., Srivastava A., Singh N. 2012. Toll-like receptor signaling: a perspective to develop vaccine against leishmaniasis. Microbiological Research 167: 445-451.
  • [32] Karmakar S., Bhaumik S.K., Paul J., De T. 2012. TLR4 and NKT cell synergy in immunotherapy against visceral leishmaniasis. PLoS Pathogens 8: e1002646.
  • [33] Rudy S.J. 2002. Imiquimod (Aldara): modifying the immune response. Dermatology Nursing 14: 268-270.
  • [34] Miller R.L., Meng T.C., Tomai M.A. 2008. The antiviral activity of Toll-like receptor 7 and 7/8 agonists. Drug News and Perspectives 21: 69-87.
  • [35] Neogy A.B., Nandy A., Ghosh Dastidar B., Chowdhury A.B. 1988. Modulation of the cellmediated immune response in kala-azar and postkala-azar dermal leishmaniasis in relation to chemotherapy. Annals of Tropical Medicine and Parasitology 82: 27-34.
  • [36] Carvalho E.M., Teixeira R.S., Johnson W.D. Jr. 1981. Cell-mediated immunity in American visceral leishmaniasis: reversible immunosuppression during acute infection. Infection and Immunity 33: 498-500.
  • [37] Carvalho E.M., Bacellar O., Barral A., Badaro R., Johnson W.D., Jr. 1989. Antigen-specific immuno -suppression in visceral leishmaniasis is cell mediated. Journal of Clinical Investigation 83: 860-864.
  • [38] Goto H., Lindoso J.A. 2004. Immunity and immunosuppression in experimental visceral leishmaniasis. Brazilian Journalo of Medical and Biological Research 37: 615-623.
  • [39] Dasgupta S., Mookerjee A., Chowdhury S.K., Ghose A.C. 1999. Immunosuppression in hamsters with progressive visceral leishmaniasis: an evaluation of the role of nitric oxide toward impairment of the lymphoproliferative response. Parasitology Research 85: 594-596.
  • [40] Gifawesen C., Farrell J.P. 1989. Comparison of Tcell responses in self-limiting versus progressive visceral Leishmania donovani infections in golden hamsters. Infection and Immunity 57: 3091-3096.
  • [41] Melby P.C., Chandrasekar B., Zhao W., Coe J.E. 2001.The hamster as a model of human visceral leishmaniasis: progressive disease and impaired generation of nitric oxide in the face of a prominent Th1-like cytokine response. Journal of Immunology 166:1912-1920.
  • [42] Paul J., Karmakar S., De T. 2012. TLR-mediated distinct IFN-gamma/IL-10 pattern induces protective immunity against murine visceral leishmaniasis. European Journal of Immunology 42: 2087-2099.
  • [43] Reiner N.E., Ng W., Wilson C.B., McMaster W.R., Burchett S.K. 1990. Modulation of in vitro monocyte cytokine responses to Leishmania donovani. Interferon-gamma prevents parasite-induced inhibition of interleukin 1 production and primes monocytes to respond to Leishmania by producing both tumor necrosis factor-alpha and interleukin 1. Journal of Clinical Investigation 85: 1914-1924.
  • [44] Kar S., Ukil A., Das P.K. 2011. Cystatin cures visceral leishmaniasis by NF-kappaB-mediated proinflammatory response through co-ordination of TLR/MyD88 signaling with p105-Tpl2-ERK pathway. European Journal of Immunology 41: 116-127.
  • [45] Haldar J.P., Ghose S., Saha K.C., Ghose A.C. 1983. Cell-mediated immune response in Indian kala-azar and post-kala-azar dermal leishmaniasis. Infection and Immunity 42: 702-707.
  • [46] Ganguly S., Das N.K., Barbhuiya J.N., Chatterjee M. 2010. Post-kala-azar dermal leishmaniasis-an overview. International Journal of Dermatology 49: 921-931.
  • [47] Zijlstra E.E., Musa A.M., Khalil E.A., el-Hassan I.M., el-Hassan A.M. 2003. Post-kala-azar dermal leishmaniasis. Lancet Infectious Diseases 3: 87-98.
  • [48] Singh R., Kumar D., Ramesh V., Negi N.S., Singh S., Salotra P. 2006. Visceral leishmaniasis, or kala azar (KA): high incidence of refractoriness to antimony is contributed by anthroponotic transmission via post-KA dermal leishmaniasis. Journal of Infectious Diseases 194: 302-306.
  • [49] Subba Raju B.V., Gurumurthy S., Kuhls K., Bhandari V., Schnonian G., Salotra P. 2012. Genetic typing reveals monomorphism between antimony sensitive and resistant Leishmania donovani isolates from visceral leishmaniasis or post kala-azar dermal leishmaniasis cases in India. Parasitology Research 111: 1559-1568.
  • [50] Blackwell J.M., Fakiola M., Ibrahim M.E., Jamieson S.E., Jeronimo S.B., Miller E.N., Mishra A., Mohamed H.S., Peacock C.S., Raju M., Sundar S., Wilson M.E. 2009. Genetics and visceral leishmaniasis: of mice and man. Parasite Immunology 31: 254-266.
  • [51] Fakiola M., Miller E.N., Fadl M., Mohamed H.S., Jamieson S.E., Francis R.W., Cordell H.J., Peacock C.S., Raju M., Khalil E.A., Elhassan A., Musa A.M., Silveira F., Shaw J.J., Sundar S., Jeronimo S.M., Ibrahim M.E., Blackwell J.M. 2011. Genetic and functional evidence implicating DLL1 as the gene that influences susceptibility to visceral leishmaniasis at chromosome 6q27. Journal of Infectious Diseases 204: 467-477.
  • [52] Mauel J. 1990. Macrophage-parasite interactions in Leishmania infections. Journal of Leukocyte Biology 47: 187-193.
  • [53] Ridley M.J., Wells C.W. 1986. Macrophage-parasite interaction in the lesions of cutaneous leishmaniasis. An ultrastructural study. American Journal of Pathology 123: 79-85.
  • [54] Musa A., Khalil E., Hailu A., Olobo J., Balasegaram M., Omollo R., Edwards T., Rashid J., Mbui J., Musa B., Abuzaid A.A., Ahmed O., Fadalalla A., El-Hassan A., Mueller M., Mucee G., Njoroge S., Manduku V., Mutuma G., Apadet L., Lodenyo H., Mutea D., Kirigi G., Yifru S., Mengistu G., Hurissa Z., Hailu W., Weldegebreal T., Tafes H., Mekonnen Y., Makonnen E., Ndegwa S., Saqaki P., Kimutai R., Kesusu J., Owiti R., Ellis S., Wasunna M. 2012. Sodium stibogluconate (SSG) & paromomycin combination compared to SSG for visceral leishmaniasis in East Africa: a randomised controlled trial. PLoS Neglected Tropical Diseases 6: e1674.
  • [55] Solomon M., Baum S., Barzilai A., Pavlotsky F., Trau H., Schwartz E. 2009. Treatment of cutaneous leishmaniasis with intralesional sodium stibogluconate. Journal of the European Academy of Dermatology and Venereology 23: 1189-1192.
  • [56] Singh N., Kumar M., Singh R.K. 2012. Leishmaniasis: current status of available drugs and new potential drug targets. Asian Pacific Journal of Tropical Medicine 5: 485-497.
  • [57] Garland S.M. 2003. Imiquimod. Current Opinion in Infectious Diseases 16: 85-89.
  • [58]Peine K.J., Gupta G., Brackman D.J., Papenfuss T.L., Ainslie K.M., Satoskar A.R., Bachelder E.M. 2013. Liposomal resiquimod for the treatment of Leishmania donovani infection. Journal of Antimicrobial Chemotherapy, DOI: dkt320pii]10.1093/jac/dkt320.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-403acf27-3f7d-47e7-b73e-b48a9d22ae3e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.