PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2018 | 58 | 1 |
Tytuł artykułu

Enhancement of fungal DNA templates and PCR amplification yield by three types of nanoparticles

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Nanodiagonastic methods in plant pathology are used for enhancing detection and identification of different plant pathogens and toxigenic fungi. Improvement of the specificity and efficiency of the polymerase chain reaction (PCR) by using some nanoparticles is emerging as a new area of research. In the current research, silver, zinc, and gold nanoparticles were used to increase the yield of DNA for two plant pathogenic fungi including soil-borne fungus Rhizoctonia solani and toxigenic fungus Alternaria alternata. Gold nanoparticles combined with zinc and silver nanoparticles enhanced both DNA yield and PCR products compared to DNA extraction methods with ALB buffer, sodium dodecyl sulfate, ALBfree from protinase K, ZnNPs and AgNPs. Also, by using ZnNPs and AgNPs the DNA yield was enhanced and the sensitivity of random amplified polymorphic DNA (RAPD) PCR products was increased. Application of nanomaterials in the PCR reaction could increase or decrease the PCR product according to the type of applied nanometal and the type of DNA template. Additions of AuNPs to PCR mix increased both sensitivity and specificity for PCR products of the tested fungi. Thus, the use of these highly stable, commercially available and inexpensive inorganic nano reagents open new opportunities for improving the specificity and sensitivity of PCR amplicon, which is the most important standard method in molecular plant pathology and mycotoxicology.
Wydawca
-
Rocznik
Tom
58
Numer
1
Opis fizyczny
p.66-72,fig.,ref.
Twórcy
  • Department of Biology, Science and Humanities College, Alquwayiyah, Shaqra University, Saudi Arabia
autor
  • Plant Pathology Research Institute, Agricultural Research Centre (ARC), 12619, Giza, Egypt
autor
  • College of Biotechnology, Misr University for Science and Technology, P.O.Box: 77, 6th of October City, Egypt
autor
  • College of Biotechnology, Misr University for Science and Technology, P.O.Box: 77, 6th of October City, Egypt
autor
  • College of Biotechnology, Misr University for Science and Technology, P.O.Box: 77, 6th of October City, Egypt
autor
  • Plant Pathology Research Institute, Agricultural Research Centre (ARC), 12619, Giza, Egypt
Bibliografia
  • Abd-Elsalam K.A., Asran-AmalA., El-Samawaty A. 2007. Isolation of high quality DNA from cotton and its fungal pathogens. Journal of Plant Diseases and Protection 114 (3): 113–116. DOI: https://doi.org/10.1007/bf03356717
  • Alshahni M.M., Makimura K., Yamada T., Satoh K., Ishihara Y., Takatori K., Sawada T. 2009. Direct colony of several medically important fungi using Ampirect plus. Japan Journal of Infectious Diseases 62: 164–167.
  • Alghuthaymi M.A., Ali A.A., Hashim A.F., Abd-Elsalam K.A. 2016. Rapid method for the detection of Ralstonia solanacearum by isolation DNA from infested potato tubers based on magnetic nanotools. The Philippine Agricultural Scientist 99: 113–118.
  • Binh V.Vu., Litvinov D., Willson R.C. 2008. Gold nanoparticle effects in polymerase chain reaction, favoring of smaller products by polymerase adsorption. Analytical Chemistry 80 (14): 5462–5467. DOI: https://doi.org/10.1021/ac8000258
  • Cui D., Tian F., Kong Y., Titushikin I., Gao H. 2004. Effects of single-walled carbon nanotubes on the polymerase chain reaction. Journal of Nanotechnology 4 (1): 154– 157. DOI:https://doi.org/10.1088/0957-4484/15/1/030
  • Elechiguerra J.L., Burt J.L., Morones J.R., Camacho-Bragado A., Gao X., Lara H.H., Yacaman M.J. 2005. Interaction of silver nanoparticles with HIV-1. Journal of Nanobiotechnology 3 (6): 1–10. DOI: https://doi.org/10.1186/1477-3155-3-6
  • Hoshino A., Manabe N., Fujioka K., Suzuki K., Yasuhara M., Yamamoto K. 2007. Use of fluorescent quantum dot bioconjugates for cellular imaging of immune cells, cell organelle labeling, and nanomedicine: surface modification regulates biological function, including cytotoxicity. Journal of Artificial Organs 10 (3): 149–157. DOI: https://doi.org/10.1007/s10047-007-0379-y
  • Kambli P., Kelkar-Mane V. 2016. Nanosized Fe3O4 an efficient PCR yield enhancer – Comparative study with Au, Ag nanoparticles. Colloids and Surfaces B: Biointerfaces 141: 546–52. DOI: https://doi.org/10.1016/j.colsurfb.2016.02.024
  • Kordalewska M., Brillowska-Dąbrowska A., Jagielski T., Dworecka-Kaszak B. 2015. PCR and real-time PCR assays to detect fungi of Alternaria alternate species. Acta Biochimica Polonica 62 (4): 707–712. DOI: https://doi.org/10.18388/abp.2015_1112
  • Li M., Lin Y.C., Wu C.C., Liu H.S. 2005. Enhancing the efficiency of a PCR using gold nanoparticals. Nucleic Acid Research 33 (21): e184. DOI: https://doi.org/10.1093/nar/gni183
  • Li Q., He R., Gao F., Cui D. 2008. The effects of mercaptoacetic acid modified CdTe quantum dots on specificity of polymerase chain reaction. Journal Shanghai Jiao Tong University 5: 693–696.
  • Liang G., Ma C., Zhu Y., Li S., Shao Y., Wang Y., Xiao Z. 2010. Enhanced specificity of multiplex polymerase chain reactionvia CdTe quantum dots. Nanoscale Research Letters 6: 51. DOI: https://doi.org/10.1007/s11671-010-9797-5
  • Lin Y., Li J., Yao J. 2013. Mechanism of gold nanoparticle induced simultaneously increased PCR efficiency and specificity. Chinese Science Bulletin 58 (36): 4593–4601. DOI:https://doi.org/10.1007/s11434-013-6080-z
  • McCarthy J.R., Bhaumik J., Karver M.R., Erdem S.S., Weissleder R. 2010. Target nanoagents for the detection of cancers. Molecular Oncology 4 (6): 511–528. DOI: https://doi.org/10.1016/j.molonc.2010.08.003
  • Mocan T., Matea C.T., Pop T., Mosteanu O., Buzoianu A.D., Puia C., Iancu C., Mocan L. 2017. Development of nanoparticle-based optical sensors for pathogenic bacterial detection. Journal of Nanobiotechnology 15: 25. DOI: https://doi.org/10.1186/s12951-017-0260-y
  • Moslem M.A., Abd-Elsalam K.A., Bahkali A.H., Pierre J.G.M. 2010. An efficient method for DNA extraction from Cladosporioid fungi. Genetics and Molecular Research 9 (4): 2283–2291. DOI: https://doi.org/10.4238/vol9-4gmr936
  • Narang J., Malhotra N., Narang S., Singhal C., Kansal R., Chandel V., Srivatsan K.V., Pundir C.S. 2016. Replacement of magnesium chloride with magnesium nanoparticles in polymerase chain reaction. Protocol Exchange. DOI: https://doi.org/10.1038/protex.2016.021
  • Pal S., Yu Kyung T., Song J.M. 2007. Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the Gram-negative bacterium Escherichia coli. Applied and Environmental Microbiology 73 (6): 1712–1720. DOI: https://doi.org/10.1128/aem.02218-06
  • Park J.Y., Back S.H., Chang S.-J., Lee S.J., Lee K.G., Park T.J. 2015. Assisted synthesis of carbon-coated silica for PCR enhancement. ACS Applied Materials and Interfaces 2 (28): 15633–15640. DOI: 10.1021/acsami.5b04404
  • Rehman A., Sarwar Y., Raza Z.A., Hussain S.Z., Mustafa T., Khan W.S., Ghauri M.A., Haque A., Hussain I. 2015. Metal nanoparticle assisted polymerase chain reaction for strain typing of Salmonella typhi. Analyst 140 (21): 7366–7372. DOI: https://doi.org/10.1039/c5an01286d
  • Rai M., Yadav A., Gade A. 2009. Silver nanoparticles as a new generation of antimicrobials. Biotechnology Advances 27 (1): 76–83. DOI: https://doi.org/10.1016/j.biotechadv.2008.09.002
  • Shen H., Min H., Zhongnan Y., Chen W., Longzhang Z. 2005. Polymerase chain reaction of Au nanoparticle-bound primers. Chinese Science Bulletin 50 (18): 2016–2020. DOI: https://doi.org/10.1360/982004-430
  • Trzewik A., Nowak K. J., Orlikowska T. 2016. A simple method for extracting DNA from rhododendron plants infected with Phytophthora spp. for use in PCR. Journal of Plant Protection Research 56 (1): 104–109. DOI: https://doi.org/10.1515/jppr-2016-0014
  • Vanzha E., Pylaev T., Khanadeev V., Konnova S., Fedorova V., Khlebtsov N. 2016. Gold nanoparticle-assisted polymerase chain reaction: effects of surface ligands, nanoparticle shape and material. RSC Advances 6 (11): 110146–110154. DOI:https://doi.org/10.1039/c6ra20472d
  • Wan W., Yeow J.T.W. 2009. The effects of gold nanoparticles with different sizes on polymerase chain reaction efficiency. Nanotechnology 20 (32): 325702. DOI: https://doi.org/10.1088/0957-4484/20/32/325702
  • Wang L., Zhu Y., Jiang Y., Qiao R., Zhu S., Chen W., Xu C. 2009. Effects of quantum dots in polymerase chain reaction. The Journal of Physical Chemistry B113 (21): 7637−7641. DOI:10.1021/jp902404y
  • White T.J., Bruns T., Lee S., Tayler J. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for polygenetics. PCR Protocols. A Guide to Methods and Applications: 315−322. DOI: https://doi.org/10.1016/b978-0-12-372180-8.50042-1
  • Yao J., Lin Y., Li J. 2012. Effect of gold nanoparticles on the efficiency and specificity of polymerase chain reaction. Environmental Chemistry 31: 1−8. (in Chinese)
  • Yuce M., Kurt H., Mokkapati V.R.S.S., Budak H. 2014. Employment of nanomaterials in Polymerase Chain Reaction, insight into the impacts and putative operating mechanisms ofnano additives in PCR. RSC Advances 4 (69): 36800−36814. DOI: https://doi.org/10.1039/c4ra06144f
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-402b54c2-0c47-472c-b144-086af889ae65
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.