PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2002 | 07 | 4 |

Tytuł artykułu

Computer simulation studies on the significance of lipid polar head charge

Autorzy

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Ripple phase modelling was achievable by taking into consideration the dipole structure of the polar heads of model membrane molecules. Computer simulations enabled the selective analysis of a model membrane. Considering only the hydrophobic part of the lipid membrane, the gel-fluid transition stage can be obtained in such a simulation. Assuming an additional degree of freedom, the entire molecule can move along the normal to the membrane surface projected from two C-C bonds. The amounts of shifted lipids were 17% and 33% at temperatures of 300 K (gel) and 330 K (fluid), respectively. Taking into account only polar head interactions in media of different ionic strength I, dielectric constant ε, and an effective charge and temperature, we could observe the same behaviour of the examined system independently of the values of I and ε when the charge was reduced to q/2. The amount of shifted heads at 300 K decreases sharply with the reduced charge value, with an accompanying increase in the number of “standing” polar heads. Summing up, it can be stated that hydrocarbon lipid chains exhibit a greater tendency to displacement in the fluid state than in the gel state. However, the polar heads behave in the opposite way: there are more displaced heads at 300 K than at 330 K. Thus, the overall analysis of the interactions between the molecules of the model membrane should enable us to find model parameters suitable for studying the lipid membrane at a wide range of temperatures. Finally, an electrostatic profile close to the membrane surface could be estimated in different membrane states. This should be useful in membrane-biologically active compound interaction analysis.

Wydawca

-

Rocznik

Tom

07

Numer

4

Opis fizyczny

p.971-982,fig.,ref.

Twórcy

autor
  • Department of Physics and Biophysics, Agricultural University, Norwida 25, 50-375 Wroclaw, Poland

Bibliografia

  • 1. Kubica, K. The effect of amphiphilic counterions on the gel-fluid phase transition of the lipid bilayer. App. Math. Comp. 87 (1997) 261-270.
  • 2. Kubica, K. Polar head charge of membrane modifiers and their biological activity: The Monte Carlo simulation studies. Task Quarterly 2 (1998) 601- 609.
  • 3. Jorgensen, K., Ipsen, J. H., Mouritsen, O. G. Bennett, D. and Zuckerman, M. J. A generał model for the interaction of foreign molecules with lipid membranes: drugs and anaesthetics, Biochim. Biophys. Acta 1062 (1991) 227-238.
  • 4. Pink, D. A., Green, T. J. and Chapman, D. Raman Scattering in Bilayers of Saturated Phosphatidylcholines. Experiment and Theory. Biochemistry 19 (1980) 349-356.
  • 5. Mouritsen, O. G., Boothroyd, A., Harris, R., Jan, N., Lookman, T., MacDonald, L., Pińk, D. A. and Zuckermann, M. J. Computer simulation of the main gel-fluid phase transition of lipid bilayers. J. Chem. Phys.79 (1983) 2027-2041.
  • 6. Ipsen, J. H., Mouritsen, O. G. and Zuckermann, M. J. Theory of thermal anomalies in the specific heat of lipid bilayers containing cholesterol. Biophys. J. 56 (1989) 661-667.
  • 7. Ipsen, J. H., Mouritsen, O. G. and Bloom, M. Relationships between lipid membrane area, hydrophobic thickness, and acyl-chain orientational order. The effects of cholesterol. Biophys. J. 57 (1990) 405-412.
  • 8. Jorgensen, K., Ipsen, J. H., Mouritsen, O. G., Bennett, D. and Zuckerman, M. J. The effects of density fluctuations on the partitioning of foreign molecules into lipid bilayers: Application to anaesthetics and insecticides. Biochim. Biophys. Acta 1067 (1991) 241-253.
  • 9. Sperotto, M. M. and Mouritsen, O. G. Monte Carlo simulation studies of lipid order parameter profiles near integral membrane proteins. Biophys. J. 59 (1991) 261-270.
  • 10. Jorgensen, K. and Mouritsen, O. G. Phase separation dynamics and lateral organization of two-component lipdi membranes. Biophys. J. 95 (1995) 942-954.
  • 11. Thompson, T. E., Sankaram, M. B., Biltonen, R. L., Marsh, D. and Vaz, W. L. Effect of domain structure on in-plain reactions and interactions. Mol. Membr. Biol. 12 (1995) 157-162.
  • 12. Toker, A., Cantley, L. C. Signalling through the lipid products of phosphoinositide -3 -OH kinaze. Nature 387 (1997) 673-676
  • 13. Subramanian, M., Jutila, A. and Kinnunen, P. K. J. Binding and dissiciation of Cytochrome c to and from membranę containing acidic phospholipids. Biochemistry 37 (1998) 1394-1402.
  • 14. Bernardes, C., Valdeira, M. L. and Ramalho-Santos, J. Fusion activity of African swine fever cirus towards target membranes: lipid dependence and effect of dehydrating agents. Biochem. Mol. Biol. Inter. 37 (1995) 481-488.
  • 15. Lamaze, C. and Schmid, S. L. The emergence of clathrin-indepentent pinocytic pathways. Curr. Opin. Cell. Biol. 7 (1995) 573-580.
  • 16. Barylko. B., Binns, D., Lin, K. M., Atkins, M. A. L., Jameson, D. M., Yin, H. L. and Albanesi, J. P. Synergistic activation of dynamin GTPase by Grb2 na phosphoinositides. J. Biol. Chem. 273 (1998) 3791-3797.
  • 17. Webb, M. S., Wheeler, J. J., Bally, M. B. and Mayer, L. D. The cationic lipid stearylamine reduces the permeability of the cationic drug verapamil and prochloperazine to lipid layers: implications for drug delivery. Biochim. Biophys. Acta 1238 (1995) 147-155.
  • 18. Casciola-Rosen, L., Rosen, A., Petri, M. and Schlissel, M. Surface blebs on apoptotic cells are sits of enhanced procoagulant activity: implications for coagulation events and antigenic spread in systemic lupus erythematosis. Proc. Natl. Acad. Sci. USA 93 (1996) 1724-1732.
  • 19. Kubica, K. Monte Carlo simulation towards ripple phase modelling, Comput. Chem. 25 (2001) 245-250.
  • 20. Rappolt, M. and Rapp, G. Structure of the stable and metastable ripple phase of dipalmitoylphosphatidylcholine. Eur. Biophys. J. 24 (1996) 381-386.
  • 21. Cevc, G. Membrane electrostatics. Biochim. Biophys. Acta 1031 (1990) 311-382.
  • 22. Kubica, K. Computer simulation studies on significance of lipid polar head orientation. Comput. Chem. 26 (2002) 351-356.
  • 23. Marrink, S., J., Tieleman, D. P., van Guuren, A. R. and Berendsen, H. J. C. Membanes and water: An interesting relationship. Faraday Discuss. 103 (1996) 191-201.
  • 24. Hauser, H. Conformation of phospholipids crystal structure of a lysophosphatidylcholine analogue. J. Mol. Biol. 137 (1980) 249-264.
  • 25. Tieleman, D. P. and Berendsen, H. J. C. Molecular dynamics simulations of fully hydrated dipalmitoylphosphatidylcholine bilayer with different macroscopic boundary condidions and parameters. J. Chem. Phys. 105 (1996) 4871-4880.
  • 26. Benerjee, S. Exploring the ripple phase of biomembranes. Physica A 308 (2002) 89-100.
  • 27. Brockman, H. Dipole potential of lipid membranes. Chem. Phys. Lipids 73 (1994) 57-79.
  • 28. Trandum, Ch., Westh, P. and Jorgensen K. Slow relaxation of the sub-main transition in multilamellar phosphatidylcholine vesicles. Biochim. Biophys. Acta 1421 (1999) 207-212.
  • 29. Kubica, K. Pink's model and lipid membranes. Cell. Mol. Biol. Lett. 2 (1997) 257-263.
  • 30. Heimburg, T. A model for the lipid pretransition: coupling of ripple formation with the chain-melting transition. Biophys. J. 78 (2000) 1154- 1165.
  • 31. Kodama, M. and Miyata, T. Effect of the head group of phospholipids on the acyl-chain packing and structure of their assemblies as revealed by microcalorimetry and electron microscopy. Colloids Surf. A. 109 (1996) 283-289.
  • 32. Ciarke, R. J. Effect of lipid structure on the dipole potential of phosphatidylcholine bilayers. Biochim. Biophys. Acta 1327 (1997) 269-278.
  • 33. Pearson, R. H. and Pascher, I. The molecular structure of lecithin dihydrate. Nature 281 (1979) 499-501.
  • 34. Sarapuk, J. and Kubica, K. Cut-off phenomenon. Cell. Mol. Biol. Lett. 3 (1998) 261-269.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-402940f7-9539-44fc-bc17-7f31d3ca5431
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.