PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2013 | 22 | 5 |

Tytuł artykułu

Fluorescence excitation-emission matrix spectroscopy and parallel factor analysis in drinking water treatment: A review

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Fluorescence excitation-emission matrix (EEM) spectroscopy coupled with parallel factor analysis (PARAFAC) is an established tool of organic matter fingerprinting in aqueous systems. Recently, EEM-PARAFAC has been successfully applied in drinking water treatment for simple, rapid, and sensitive evaluation of organic matter removal during different treatment processes. This review describes some recent applications of EEM-PARAFAC in the drinking water industry. It is divided into two sections according to field of application: characterization of organic matter and its removal in drinking water treatment, and determination of contaminants in drinking water.

Wydawca

-

Rocznik

Tom

22

Numer

5

Opis fizyczny

p.1289-1295,ref.

Twórcy

  • Institute of Analytical Chemistry, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinskeho 9, SK-812 37 Bratislava, Slovak Republic
autor
  • Institute of Analytical Chemistry, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinskeho 9, SK-812 37 Bratislava, Slovak Republic
autor
  • Institute of Analytical Chemistry, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinskeho 9, SK-812 37 Bratislava, Slovak Republic

Bibliografia

  • 1. BRIDGEMAN J., BIEROZA M., BAKER A. The application of fluorescence spectroscopy to organic matter characterization in drinking water treatment. Rev. Environ. Sci. Biotechnol. 10, 277, 2011.
  • 2. ISHII S.K.L., BOYER T.H. Behavior of reoccurring PARAFAC components in fluorescent dissolved organic matter in natural and engineered systems. Environ. Sci. Technol. 46, 2006, 2012.
  • 3. MATILAINEN A., GJESSING E.T., LAHTINEN T., HED L., BHATNAGAR A., SILLANPÄÄ M. An overview of the methods used in the characterization of natural organic matter (NOM) in relation to drinking water treatment. Chemosphere 83, 1431, 2011.
  • 4. BRO. R. PARAFAC. Tutorial and applications. Chemom. Intell. Lab. Syst. 38, 149, 1997.
  • 5. BIEROZA M., BAKER A., BRIDGEMAN J. New data mining and calibration approaches to the assessment of water treatment efficiency. Adv. Eng. Softw. 44, 126, 2012.
  • 6. BAGHOTH S.A., SHARMA S.K., AMY G.L. Tracking natural organic matter (NOM) in a drinking water treatment plant using fluorescence excitation-emission matrices and PARAFAC. Water Res. 45, 797, 2011.
  • 7. BAGHOTH S.A., SHARMA S.K., GUITARD M., HEIM V., CROUE J.P., AMY G.L. Removal of NOM-constituents as characterized by LCOCD and F-EEM during drinking water treatment. J. Water Supp. Res. Technol. 60, 412, 2011.
  • 8. SWIETLIK J., SIKORSKA E. Characterization of Natural Organic Matter Fractions by High Pressure size-exclusion chromatography, specific UV absorbance and total luminescence spectroscopy. Pol. J. Environ. Stud. 15, 145, 2005.
  • 9. LI W.-T., XU Z.-X., LI A.-M., WU W., ZHOU Q., WANG J.-N. HPLC/HPSEC-FLD with multi-excitation/emission scan for EEM interpretation and dissolved organic matter analysis. Water Res. 47, 1246, 2013.
  • 10. ZHANG Y., YIN Y., FENG L., ZHU G., SHI Z., LIU X., ZHANG Y. Characterizing chromophoric dissolved organic matter in Lake Tianmuhu and its catchment basin using excitation-emission matrix fluorescence and parallel factor analysis. Water Res. 45, 5110, 2011.
  • 11. HERZSPRUNG P., VON TUMPLING W., HERTKORN N., HARIR M., BUTNER O., BRAVIDOR J., FRIESE K., SCHMITT-KOPPLIN P. Variations of DOM quality in inflows of a drinking water reservoir: Linking of van Krevelen Diagrams with EEMF spectra by rank correlation. Environ. Sci. Technol. 46, 5511, 2012.
  • 12. YU X., CHU H. CAO D., MA Y., DONG B. WEI Y. Pilotscale hybrid bio-diatomite/dynamic membrane reactor for slightly polluted raw water purification. Desalination 285, 73, 2012.
  • 13. PIFER A.D., MISKIN D.R., COUSINS S.L., FAIREY J.L. Coupling asymmetric flow-field flow fractionation and fluorescence parallel factor analysis reveals stratification of dissolved organic matter in a drinking water reservoir. J. Chromatogr. A 1218, 4167, 2011.
  • 14. SANCHEZ N.P., SKERIOTIS A.T., MILLER CH.M. Assessment of dissolved organic matter fluorescence PARAFAC components before and after coagulation-filtration in a full scale water treatment plant. Water Res. 2013 [In press].
  • 15. AUSTNES K., EVANS C.D., ELIOT-LAIZE C., NADEN P.S., OLD G.H. Effects of storm events on mobilization and in-stream processing of dissolved organic matter (DOM) in a Welsh peatland catchment. Biogeochemistry 99, 157, 2010.
  • 16. HONG H., YANG L., GUO W., WANG F., YU X. Characterization of dissolved organic matter under contrasting hydrologic regimes in a subtropical watershed using PARAFAC model. Biogeochemistry 109, 163, 2012.
  • 17. PEIRIS R.H., BUDMAN H., MORESOLI CH., LEGGE R.L. Fouling control and optimization of a drinking water membrane filtration process with real-time model parameter adaptation using fluorescence and permeate flux measurements. J. Process Contr. 23, 70, 2013.
  • 18. NGUYEN H.V.-M., LEE M.-H., HUR J., SCHLAUTMAN M.A. Variations in spectroscopic characteristics and disinfection byproduct formation potentials of dissolved organic matter for two contrasting storm events. J. Hydrol. 481, 132, 2013.
  • 19. CHEN B., WESTERHOFF P. Predicting disinfection byproduct formation potential in water. Water Res. 44, 3755, 2010.
  • 20. ATES N., KITIS M., YETIS U. Formation of chlorination byproducts in waters with low SUVA – correlations with SUVA and differential UV spectroscopy. Water Res. 41, 4139, 2007.
  • 21. JOHNSTONE D.W., SANCHEZ N.P., MILLER CH.M. Parallel factor analysis of excitation-emission matrices to assess drinking water disinfection byproduct formation during a peak formation period. Environ. Eng. Sci. 26, 1551, 2009.
  • 22. PIFER A.D., FAIREY J.L. Improving on SUVA254 using fluorescence-PARAFAC analysis and asymmetric flowfield flow fractionation for assessing disinfection byproduct formation and control. Water Res. 46, 2927, 2012.
  • 23. HAO R., REN H., LI J., MA Z., WAN H. ZHENG X. CHENG S. Use of three-dimensional excitation and emission matrix fluorescence spectroscopy for predicting the disinfection by-product formation potential of reclaimed water. Water Res. 46, 5765, 2012.
  • 24. BAGHOTH S.A., DIGNUM M., GREFTE A., KROESBERGEN J., AMY G.L. Characterization of NOM in a drinking water treatment process train with no disinfectant residual. Water Sci. Technol. 9, 379, 2009.
  • 25. BIEROZA M., BAKER A., BRIDGEMAN J. Relating freshwater organic matter fluorescence to organic carbon removal efficiency in drinking water treatment. Sci. Total Environ. 407, 1765, 2009.
  • 26. BAKER A., TIPPING E., THACKER S.A., GONDAR D. Relating dissolved organic matter fluorescence and functional properties. Chemosphere 73, 1765, 2008.
  • 27. COOK R.L., BIRDWELL J.E., LATTAO C., LOWRY M. A Multimethod Comparison of Atchafalaya Basin Surface Water Organic Matter Samples. J. Environ. Qual. 38, 702, 2009.
  • 28. HUDSON N.J., BAKER A., REYNOLDS D. Fluorescence analysis of dissolved organic matter in natural, waste and polluted waters – a review. Rivers Res. 23, 631, 2007.
  • 29. GONE D.L., SEIDEL J.-L., BATIOT C., BAMORY K., LIGBAN R., BIEMI J. Using fluorescence spectroscopy EEM to evaluate the efficiency of organic matter removal during coagulation-flocculation of a tropical surface water (Agbo reservoir). J. Hazard. Mater. 172, 693, 2009.
  • 30. HENDERSON R.K., BAKER A., MURPHY K.R., HAMBLY A., STUETZ R.M., KHAN S.J. Fluorescence as a potential monitoring tool for recycled water systems: a review. Water Res. 43, 863, 2009.
  • 31. MURPHY K.R., HAMBLY A., SINGH S., HENDERSON R.K., BAKER A., STUETZ R., KHAN S.J. Organic matter fluorescence in municipal water recycling schemes: Toward a unified PARAFAC model. Environ. Sci. Technol. 45, 2909, 2011.
  • 32. BEGGS K.M.H., SUMMERS R.S. Character and chlorine reactivity of dissolved organic matter from a Mountain Pine Beetle impacted Watershed. Environ. Sci. Technol. 45, 5717, 2011.
  • 33. BIEROZA M.Z., BRIDGEMAN J., BAKER A. Fluorescence spectroscopy as a tool for determination of organic matter removal efficiency at water treatment works. Drinking Water Eng. Sci. 3, 63, 2010.
  • 34. BIEROZA M., BAKER A., BRIDGEMAN J. Assessment of low pH coagulation performance using fluorescence spectroscopy. J. Environ. Engin. 137, 596, 2011.
  • 35. SINGH S. Characterisation of reverse osmosis permeates from municipal recycled water systems using fluorescence spectroscopy: Implications for integrity monitoring. Chemosphere 73, 1765, 2008.
  • 36. SEREDYNSKA-SOBECKA B., STEDMON C.A., BOEHANSEN R., WAUL C.K., ARVIN E. Monitoring organic loading to swimming pools by fluorescence excitation-emission matrix with parallel factor analysis (PARAFAC). Water Res. 45, 2306, 2011.
  • 37. HUR J., HWANG S.J., SHIN J.K. Using synchronous fluorescence technique as a water quality monitoring tool for an urban river. Water Air Soil Pollut. 191, 231, 2008.
  • 38. SINGH S., HENDERSON R.K., BAKER A., STUETZ R.M., KHAN S.J. Characterization of reverse osmosis permeates from municipal recycled water systems using fluorescence spectroscopy: Implications for integrity monitoring. J. Membrane Sci. 421-422, 180, 2012.
  • 39. HAMBLY A.C., HENDERSON R.K., STOREY M.V., BAKER A., STUETZ R.M., KHAN S.J. Fluorescence monitoring at a recycled water treatment plant and associated dual distribution system – implications for cross-connection detection. Water Res. 44, 5323, 2010.
  • 40. PYPE M.-L., PATUREAU D., WERY N., POUSSADE Y., GERNJAK W. Monitoring reverse osmosis performance: Conductivity versus fluorescence excitation-emission matrix (EEM). J. Membrane Sci. 428, 205, 2013.
  • 41. STEDMON C.A., SEREDYNSKA-SOBECKA B., BOEHANSEN R., LE TALLEC N., WAUL CH.K., ARVIN E. A potential approach for monitoring drinking water quality from groundwater systems using organic matter fluorescence as an early warning for contamination events. Water Res. 45, 6030, 2011.
  • 42. BAKER A. Fluorescence excitation-emission matrix characterization of some sewage impacted rivers. Environ. Sci. Technol. 35, 948, 2001.
  • 43. MAS S., DE JUAN A., TAULER R., OLIVIERI A.C., ESCANDAR G.M. Application of chemometric methods to environmental analysis of organic pollutants. Talanta 80, 1052, 2010.
  • 44. ARANCIBIA J.A., ESCANDAR G.M. Room-temperature excitation-emission phosphorescence matrices and secondorder multivariate calibration for the simultaneous determination of pyrene and benzo[a]pyrene. Anal. Chim. Acta 584, 287, 2007.
  • 45. BORTOLATO S.A., ARANCIBIA J.A., ESCANDAR G.M. Chemometrics-assisted excitation-emission fluorescence spectroscopy on Nylon membranes. Simultaneous determination of benzo[a]pyrene and dibenz[a,h]anthracene at parts-per-trillion levels in the presence of the remaining EPA PAH priority pollutants as interferences. Anal. Chem. 80, 8276, 2008.
  • 46. BORTOLATO S.A., ARANCIBIA J.A., ESCANDAR G.M. Chemometrics assisted fluorimetry for the rapid and selective determination of heavy polycyclic aromatic hydrocarbons in contaminated river waters and activated sludges. Environ. Sci. Technol. 45, 1513, 2011.
  • 47. JIJI R.D., ANDERSSON G.G., BOOKSH K.S. Application of PARAFAC for calibration with excitation-emission matrix fluorescence spectra of three classes of environmental pollutants J. Chemometr. 14, 171, 2000.
  • 48. BRAVO M.M., AGUILAR L.F., QUIROZ W.V., OLIVIERI A.C., ESCANDAR G.M. Determination of tributyltin at parts-per-trillion levels in natural waters by second-order multivariate calibration and fluorescence spectroscopy. Microchem. J. 106, 95, 2013.
  • 49. WU J., ZHANG H., HE P., SHAO L. Insight into the heavy metal binding potential of dissolved organic matter in MSW leachate using EEM quenching combined with PARAFAC analysis. Water Res. 45, 1711, 2011.
  • 50. McINTYRE A.M., GUÉGUEN C. Binding interactions of algal-derived dissolved organic matter with metal ions. Chemosphere 90, 620, 2013.
  • 51. AL-REASI H.A., WOOD CH.M., SMITH D.S. Physicochemical and spectroscopic properties of natural organic matter (NOM) from various sources and implications for ameliorative effects on metal toxicity to aquatic biota. Aquat. Toxicol. 103, 179, 2011.
  • 52. WU J., ZHANG H., YAO Q.-S., SHAO L.-M., HE P.-J. Toward understanding the role of individual fluorescent components in DOM-metal binding. J. Hazard. Mater. 215-216, 294, 2012.
  • 53. WOOD CH.M., AL-REASI H.A., SCOTT SMITH D. The two faces of DOC. Aquat. Toxicol. 105S, 3, 2011.
  • 54. ZHU S.H., WU H.L., XIA A.L., NIE J.F., BIAN Y.C., CAI C.B., YU R.Q. Excitation-emission-kinetic fluorescence coupled with third-order calibration for quantifying carbaryl and investigating the hydrolysis in effluent water. Talanta 77, 1640, 2009.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-400df4bf-342e-49d8-aa52-7bae22dcfda8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.