PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Czasopismo

2017 | 59 | 3 |

Tytuł artykułu

Application of neural networks and support vector machine for significant wave height prediction

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
For the purposes of planning and operation of maritime activities, information about wave height dynamics is of great importance. In the paper, real-time prediction of significant wave heights for the following 0.5–5.5 h is provided, using information from 3 or more time points. In the first stage, predictions are made by varying the quantity of significant wave heights from previous time points and various ways of using data are discussed. Afterwards, in the best model, according to the criteria of practicality and accuracy, the influence of wind is taken into account. Predictions are made using two machine learning methods – artificial neural networks (ANN) and support vector machine (SVM). The models were built using the built-in functions of software Weka, developed by Waikato University, New Zealand.

Wydawca

-

Czasopismo

Rocznik

Tom

59

Numer

3

Opis fizyczny

p.331-349,fig.,ref.

Twórcy

autor
  • Croatian Hydrological and Meteorological Service, Zagreb, Croatia
autor
  • The Faculty of Civil Engineering, University of Zagreb, Zagreb, Croatia
autor
  • The Faculty of Civil Engineering, University of Zagreb, Zagreb, Croatia
autor
  • The Faculty of Civil Engineering, University of Zagreb, Zagreb, Croatia

Bibliografia

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-3fd1a13a-d639-4f51-bc66-8e0d54bc5a30
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.