PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Czasopismo

2018 | 77 | 1 |

Tytuł artykułu

Foetal development of the human gluteus maximus muscle with special reference to its fascial insertion

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The human gluteus maximus muscle (GMX) is characterised by its insertion to the iliotibial tract (a lateral thick fascia of the thigh beneath the fascia lata), which plays a critical role in lateral stabilisation of the hip joint during walking. In contrast, in non-human primates, the GMX and biceps femoris muscle provide a flexor complex. According to our observations of 15 human embryos and 11 foetuses at 7–10 weeks of gestation (21–55 mm), the GMX anlage was divided into 1) a superior part that developed earlier and 2) a small inferior part that developed later. The latter was adjacent to, or even continuous with, the biceps femoris. At 8 weeks, both parts inserted into the femur, possibly the future gluteal tuberosity. However, depending on traction by the developing inferior part as well as pressure from the developing major trochanter of the femur, most of the original femoral insertion of the GMX appeared to be detached from the femur. Therefore, at 9–10 weeks, the GMX had a digastric muscle-like appearance with an intermediate band connecting the major superior part to the small inferior mass. This band, most likely corresponding to the initial iliotibial tract, extended laterally and distally far from the muscle fibres. The fascia lata was still thin and the tensor fasciae latae seemed to develop much later. It seems likely that the evolutionary transition from quadripedality to bipedality and a permanently upright posture would require the development of a new GMX complex with the iliotibial tract that differs from that in non-human primates. (Folia Morphol 2018; 77, 1: 144–150)

Słowa kluczowe

Wydawca

-

Czasopismo

Rocznik

Tom

77

Numer

1

Opis fizyczny

p.144-150,fig.,ref.

Twórcy

autor
  • Department of Anatomy, Tokyo Dental College, Tokyo, Japan
autor
  • Department of Anatomy, Wuxi Medical School, Jiangnan University, Wuxi, China
autor
  • Department of Anatomy, Tokyo Dental College, Tokyo, Japan
autor
  • Department of Anatomy, Tokyo Dental College, Tokyo, Japan
autor
  • Department of Anatomy, Tokyo Dental College, Tokyo, Japan
  • Division of Internal Medicine, Sapporo Asuka Hospital, Sapporo, Japan
autor
  • Department of Anatomy, Akita University School of Medicine, Akita, Japan
autor
  • Department of Anatomy, School of Medicine, Georg-August-Universität Gőtingen, Gottingen, Germany
autor
  • Department of Anatomy, Tokyo Dental College, Tokyo, Japan

Bibliografia

  • 1. Abe S, Rhee Sk, Osonoi M, et al. Expression of intermediate filaments at muscle insertions in human fetuses. J Anat. 2010; 217(2): 167–173, doi: 10.1111/j.1469-7580.2010.01246.x, indexed in Pubmed: 20500537.
  • 2. Bardeen RC. Development and variation of the musculature of the inferior extremity and of the neighboring regions of the trunk in man. Am J Anat. 1907; 6: 332–336.
  • 3. Eng CM, Arnold AS, Lieberman DE, et al. The capacity of the human iliotibial band to store elastic energy during running. J Biomech. 2015; 48(12): 3341–3348, doi: 10.1016/j.jbiomech.2015.06.017, indexed in Pubmed: 26162548.
  • 4. Eng CM, Arnold AS, Biewener AA, et al. The human iliotibial band is specialized for elastic energy storage compared with the chimp fascia lata. J Exp Biol. 2015; 218(Pt 15): 2382–2393, doi: 10.1242/jeb.117952, indexed in Pubmed: 26026035.
  • 5. Gerlach UJ, Lierse W. Functional construction of the superficial and deep fascia system of the lower limb in man. Acta Anat (Basel). 1990; 139(1): 11–25, indexed in Pubmed: 2288185.
  • 6. Hayashi S, Kim JiH, Rodriguez-Vazquez JF, et al. Influence of developing ligaments on the muscles in contact with them: a study of the annular ligament of the radius and the sacrospinous ligament in mid-term human fetuses. Anat Cell Biol. 2013; 46(2): 149–156, doi: 10.5115/acb.2013.46.2.149, indexed in Pubmed: 23869262.
  • 7. Jalouli M, Lapierre LR, Guérette D, et al. Transitin is required for the differentiation of avian QM7 myoblasts into myotubes. Dev Dyn. 2010; 239(11): 3038–3047, doi: 10.1002/dvdy.22448, indexed in Pubmed: 20931647.
  • 8. Jin ZW, Abe H, Jin Y, et al. Positional changes in tendon insertions from bone to fascia: development of the pes anserinus and semimembranosus muscle insertion in human foetuses. Folia Morphol. 2016; 75(4): 503–511, doi: 10.5603/FM.a2016.0020, indexed in Pubmed: 27830876.
  • 9. Kaseda M, Nakamura M, Ichihara N, et al. A macroscopic examination of M. biceps femoris and M. gluteus maximus in the orangutan. J Vet Med Sci. 2008; 70(3): 217–222, indexed in Pubmed: 18388419.
  • 10. Katori Y, Hyun Kim Ji, Rodríguez-Vázquez JF, et al. Early fetal development of the intermediate tendon of the human digastricus and omohyoideus muscles: a critical difference in histogenesis. Clin Anat. 2011; 24(7): 843–852, doi: 10.1002/ca.21182, indexed in Pubmed: 21538565.
  • 11. Mokrý J, Nĕmecek S. Immunohistochemical detection of intermediate filament nestin. Acta Medica. 1998; 41(2): 73–80, indexed in Pubmed: 9729640.
  • 12. Sjöberg G, Jiang WQ, Ringertz NR, et al. Colocalization of nestin and vimentin/desmin in skeletal muscle cells demonstrated by three-dimensional fluorescence digital imaging microscopy. Exp Cell Res. 1994; 214(2): 447–458, doi: 10.1006/excr.1994.1281, indexed in Pubmed: 7925640.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-3fbd1dbf-6f27-4a39-8c76-37b750339be5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.