PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2019 | 28 | 5 |

Tytuł artykułu

Estimating dam reservoir level fluctuations using data-driven techniques

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Estimating dam reservoir level is very important in terms of the operation of a dam, the safety of transport in the river, the design of hydraulic structures, and determining pollution, the salinity of the river flow fluctuations and the change of water quality in the dam reservoir. In this study, an adaptive network-based fuzzy inference system (ANFIS ), support vector machines (SVM), radial basis neural networks (RBNN) and generalized regression neural networks (GRNN) approaches were used for the prediction and estimation of daily reservoir levels of Millers Ferry Dam on the Alabama River in the USA. Particularly, the feasibility of ANFIS as a prediction model for the reservoir level has been investigated. The Millers Ferry Dam on the Alabama River in the USA was selected as a case study area to demonstrate the feasibility and capacity of ANFIS, SVM, RBNN, and GRNN. The model results are compared with conventional auto-regressive models (AR), auto-regressive moving average (ARMA), multi-linear regression (MLR) models, and artificial intelligence models for the best-input combinations. The comparison results show that ANFIS models give better results than classical and other artificial intelligence models in estimating reservoir level.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

28

Numer

5

Opis fizyczny

p.3451-3462,fig.,ref.

Twórcy

autor
  • Civil Engineering Department, Hydraulics Division, Iskenderun Technical University, İskenderun, Hatay, Turkey
autor
  • Civil Engineering Department, Hydraulics Division, Iskenderun Technical University, İskenderun, Hatay, Turkey
autor
  • Civil Engineering Department, Hydraulics Division, Iskenderun Technical University, İskenderun, Hatay, Turkey
autor
  • Civil Engineering Department, Hydraulics Division, Osmaniye Korkut Ata University, Osmaniye, Turkey
autor
  • Civil Engineering Department, Hydraulics Division, Iskenderun Technical University, İskenderun, Hatay, Turkey

Bibliografia

  • 1. TAŞAR B., KAYA Y.Z., VARÇIN H., ÜNEŞ F., DEMIRCI M. Forecasting of suspended sediment in rivers using artificial neural networks approach. Int. Eng. J. Sci. J. 4, 79, 2017.
  • 2. DEMIRCI M., ÜNEŞ F., SAYDEMIR S. Suspended sediment estimation using an artificial intelligence approach. Sediment matters. Eds. P. Heininger, J. Cullmann. Springer International Publishing, 83, 2015.
  • 3. TAŞAR B., ÜNEŞ F., DEMIRCI. M., KAYA Y.Z. Forecasting of Daily Evaporation Amounts Using Artificial Neural Networks. Journal of Dicle University Engineering 9 (1), 543, 2018.
  • 4. DEMIRCI M., UNES F., AKOZ M.S. Prediction of cross-shore sandbar volumes using neural network approach. Journal of Marine Science and Technology. 20 (1), 171, 2015. doi:10.1007/s00773-014-0279-9
  • 5. ÜNEŞ F., DEMIRCI M., ISPIR E., KAYA Y. Z., MAMAK M., TASAR B. Estimation of Groundwater Level Using Artificial Neural Networks: a Case Study of Hatay-Turkey. Environmental Engineering 10th International Conference, 2017 DOI: https://doi.org/10.3846/enviro.2017.092
  • 6. ZAJI A.H., BONAKDARI H. Robustness lake water level prediction using the search heuristic-based artificial intelligence methods. ISH Journal of Hydraulic Engineering, 2018, doi.org/10.1080/09715010.2018.1424568.
  • 7. NITSURE S.P., LONDHE S.N., KHARE K.C. Prediction of sea water levels using wind information and soft computing techniques. Applied Ocean Research, 47, 344, 2014.
  • 8. UNES F. Dam reservoir level modeling by neural network approach: A case study. Neural Network World 4 (10), 461, 2010.
  • 9. UNES F., DEMIRCI M., KISI O. Prediction of Millers Ferry dam reservoir level in USA using artificial neural network. Periodica Polytechnica Civil Engineering, 59 (3), 309, 2015.
  • 10. PARMAR K.S., BHARDWAJ R. River water prediction modeling using neural networks, fuzzy and wavelet coupled model. Water Resources Management, 29, 17, 2015.
  • 11. YANPING Y., WENXI L., DEFA H., HONGCHAO L., LEI Z. Application of dual-response surface methodology and radial basis function artificial neural network on surrogate model of the groundwater flow numerical simulation. Polish Journal of Environmental Studies, 26 (4), 1835, 2017.
  • 12. WIKTOR H., DARIUSZ M., MAREK R., EDYTA K., ARTUR R.P. Applying an artificial neural network (ANN) to assess soil salinity and temperature variability in agricultural areas of a mountain catchment. Polish Journal of Environmental Studies, 26 (6), 2545, 2017.
  • 13. SHIRI J., SHAMSHIRBAND S., KISI Ö., KARIMI S., BATENI S. M., NEZHAD S.H.H., HASHEMI A. Prediction of water-level in the Urmia Lake using the extreme learning machine approach. Water Resources Management, 30, 5217, 2016.
  • 14. EMAMGHOLIZADEH S., MOSLEMI K., KARAMI G. Prediction the groundwater level of Bastam Plain (Iran) by artificial neural network (ANN) and adaptive neuro-fuzzy ınference system (ANFIS). Water Resources Management, 28, 5433, 2014.
  • 15. SUN W., TREVOR B. Multiple model combination methods for annual maximum water level prediction during river ice breakup. Hydrological Processes, 3 (2), 421, 2018.
  • 16. UNES F. Prediction of density flow plunging depth in dam reservoir: An artificial neural network approach. CLEAN - Soil Air Water, 38 (3), 296, 2010.
  • 17. HIMAN S., BAKHTYAR A.A., BAHARIN B.A., MOHAMMAD J.T.A., SOROUSH K., SAEED E. Assessment of WLC and Fuzzy Logic methods for site selection of water reservoirs in Malaysia. Polish Journal of Environmental Studies, 25 (3), 1223, 2016.
  • 18. DEMIRCI M., BALTACI A. Prediction of suspended sediment in river using fuzzy logic and multilinear regression approaches. Neural Computing and Applications, 23(1), 145, 2013.
  • 19. SEO Y., KIM S., KISI O., SİNGH V.P. Daily water level forecasting using wavelet decomposition and artificial intelligence techniques. Journal of Hydrology 520, 224, 2015.
  • 20. PIRI J., KAHKHA M.R.R. Prediction of water level fluctuations of Chahnimeh reservoirs in Zabol using ANN, ANFIS and Cuckoo optimization algorithm. Iranian Journal of Health, Safety and Environment 4 (2), 706, 2016.
  • 21. JANG J.S.R. ANFIS: Adaptive-Network-Based Fuzzy Inference System, IEEE Transactıons On Systems, Man, And Cybernetics 23 (3), 665, 1993.
  • 22. JANG J.S.R., SUN C.T., MIZUTAN E. Neuro-Fuzzy and Soft Computing: A Computational Approach to Learning and Machine Intelligence, New Jersey, 1997.
  • 23. CORTES C., VAPNIK V. Support vector networks. Machine Learning 20, 1, 1995.
  • 24. BROOMHEAD D.S., LOWE D. Radial Basis Functions, Multi-Variable Functional Interpolation and Adaptive Networks, London, 1988.
  • 25. HAYKIN S. Neural Networks. A Comprehensive Foundation, Prentice-Hall, Upper Saddle River, New Jersey, 1999.
  • 26. POGGIO T., GIROSI F. Networks for approximation and learning. Proceedings of the IEEE 78 (9), 1481, 1990.
  • 27. BOX G.P., JENKINS G. Time Series Analysis, Forecasting and Control, Holden Day, San Francisco, 1970.
  • 28. MUTLU E., CHAUBEY I., HEXMOOR H., BAJWA S.G. Comparison of artificial neural network models for hydrologic predictions at multiple gauging stations in an agricultural watershed. Hydrological Processes 22 (26), 5097, 2008.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-3faf3ae7-541b-4aa2-8c4c-b52dcd1d82de
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.