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Summary

We derive and compare different estimators of unknown parameters in the growth curve
model with a uniform correlation structure based on various estimators of variance matrix. We
deal with uniformly minimum variance unbiased invariant estimator (UMVUIE), maximum
likelihood estimator and outer product estimator of variance matrix. In these cases we also show
the orthogonal decomposition.
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1. Introduction

The growth curve model is a generalized multivariate analysis of variance
model, which was introduced by Potthoff and Roy (1964). Standard model is of
the form
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Y =XBZ+g, vec(e):N(O,X®I),

where Y, is matrix of observations, X . is ANOVA matrix (so that

1eP(X)), B,,, is matrix of unknown parameters, Z__ is matrix of regression

p

constants and in all article we will consider that 1eP(Z’), ¢, is matrix

of random errors which has the normal distribution and X is variance matrix

of rows of matrix Y. The vec operator stacks elements of a matrix into a vector
column-wise and I, denotes identity matrix. In the most applications of the
model, p is the number of time points observed on each of the n subjects and

m is the number of groups. This model is useful especially for modeling
growths of living organisms and it represents a statistical model widely used in
many fields of study such as biology, medicine, economy. There are many
special cases of this model depending on the correlation structure. We will deal
with uniform correlation structure, which has the following form

¥ =c?[(1-p)l +pll] (1.1)

where o® >0 and —

<p <1 are unknown parameters, which we are

interested in.
Let us denote P, orthogonal projector on column space P(X) of a matrix

X and M, =1-P, orthogonal projector on its orthogonal complement. The
important result is orthogonal decomposition in the growth curve model.
Chinese mathematicians Jianhua Hu, Ren-Dao Ye and Song-Gui Wang came up
with this idea in 2009. A simple transformation to change a model into an
equivalent which allows to determine explicit forms of estimators. Let us
consider generalized uniform correlation structure X =0,G +6,ww’. Ye and
1 1 1
Wang (2009) examine the model YG 2=YG 2P +YG 2Mg, where
1
F=G 2w. Many tasks, which are very difficult or impossible to handle in
basic models, can be done with ease in models consisting of mutually
orthogonal components. Note that generalized uniform correlation structure with

G=1, w=1, 6, =c°(1-p) and 0, = c°p is reduced to structure (1.1).
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2. Estimators based on UMVUIE of X

Under normality, uniformly minimum variance unbiased invariant estimator
of X is defined as
S= _ Y'M,Y.
n—r(X)
By moment method, since E(S)= X, unbiased estimating equations are
Tr(S)—p6?=0 and 1'S1-Tr(S)L+(p-1)p]=0,

so estimators of unknown parameters are of the form

> _ Tr(S) ~ 1 1'S1
= d = -1 2.1
Gz 0 an ol p—l(Tr(S) ] (2.1)

These estimators were derived by Zezula (2006). Now we consider the modified
model with orthogonal decomposition proposed by Ye and Wang

Y=Y, +Y,=YP, +YM,,
where 1=(1,...,1), Plzill', M, =1-P,.
p
If we denote
2 1 1
V,= PSP =c [(1—p)—+pj11 :
p
V,= MSM, = 02(1—p)(| —ill'}
p

then estimators of unknown parameters are of the form

YW

D -1 Tr(V)+Tr(V,)

62YW - Tr(Vl) +Tr(V2) ’ ‘5 — p Tr(VZ) (22)

Klein and Zezula (2010) showed that 6°z = 6*vw and P, = Py

Now we will have a look at estimators of unknown parameters for

maximum likelihood estimator of X and for outer product estimator of the
variance matrix.
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3. Estimators based on maximum likelihood estimator of X
Maximum likelihood estimator of matrix X is in the form
sM = %(Y’MXY +M,Y'P,YM,,).
The MLE of o° and p are defined as above, but S is replaced by S™. Thus

M oM
&7 =1C7) ang P S iMl—l . (3.2)
p p-1\Tr(S™)

For derivation of the estimators based on unbiased estimating equations in
this case we will need E(Tr(S™)) and E(1'S™1). The first matrix in S™ is the
matrix S except for a constant. The problem is the second matrix. Knowing that

Y:N,,(XBZ,Z1) = vecY:N_ (vec(XBZ)Z®I) (3.2)

we can write
Var[(M,, ® I)vec(Y)]= ML EM,, ®1,
SO
vec (YM,): N (0,M,ZM, ®1)

In the next step we will need the expected value theorem derived by Ghazal
and Neudecker (2000). Let us consider matrix K = (Tnxp, U_.), with

E(K) = (M,N) and

nxq

Q.- Q
Var(vec K) = Q = { moom }

QUT QUU

Let further Q =® ® 1, with

® = |:(I)TT (I)TU }
(I)UT (I)UU

Ghazal and Neudecker showed that
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E(T'AU) = Tr(A)Q,,, + M'AN.

In particular,
E(T'AT) =Tr(A)Q,; + M'AM. (3.3)

On the basis of (3.3) and the well known fact that Tr(P,) = r(X),
Tr(My) =n—r(X) and M,1=0 holds following

E(SM) = %(X)E(S) —E(M Y'P,YM,,)
_¥ r(X)M XM,

Consequently

E(Tr(s™))= %(X) 0? + = r(X)Tr(M ,62((1-p)l +pl1)

=209 ot M o2 (1 p)(p - r(2).

Similarly as above we can write

n—r(X)
n

E(1'sM1)= p(L+(p-1)p)s>.

E(US1)= %(X)

Based on the unbiased estimating equations we can derive that these
unbiased estimators of unknown parameters in this case are

o p(p=Dn(n=r(X))Tr(S") +nr(X)(p-r(2))1's™1

7T -re0lin-rO0)p -1 + r()(p - r(2)] -
S ( pl(n—r)(p~1) +r(X)(p ~r(Z)J's"1 _1}
" p-1l(-r(X)p(p-DTHS™) + r(X)(p - r(2)L'S"1

Now we use the orthogonal decomposition for this case. First modify
matrix S" to the form
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n-r(x) ¢
n n

SM
Let us denote
Vl'\’I = PlSMP1 and VZ'VI = MlsM

For traces of these matrices applies

Trv)= X

n
_ r(X)llSl
n Y

Tr(PlsP1)+%Tr(P1MZ

—M Y'P,YM,,

M,.

Y'P,YM,P,)

Tr(VM)=  Tr(MS")=Tr(s™)-Tr(PS™)

which implies

(1o )= 2R oepa o1y}

E(Tr(vM))= n—r(X)p 2 r(X) o*(1-p)(p- r(Z))—EE@SM)

n
n—r(X) r(X) )
n po” n

o"(1-p)(p-r(2))-

Unbiased estimating equations are

Tifv)- "= 5 (p-j)

and

Tifv)- " ez pyp - rizy + T ey

If we denote

_,, TO(p-r(2))
(p-1)(n—r(X))

then estimators of unknown parameters have the form

r(x) o’[L+(p-1)p]

+(p-1)p-p]=0.
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A2
G B —

S L— {T (Vi )+ —Tr(VZM )}
p(n—r(X)) a
5o=1- P Tr(VZ’V')

B p-1 aTr(VM )+ Tr(v)

(3.5)

4. Estimators based on outer product estimator of X

Another estimator of matrix X is defined as

©= ;Y’MXY +1 M. Y'YM,, .t M, Y'M,YM.,,
n—r(X) n n—r(X)

it is called the outer product estimator or quadratic least squares estimator of X .
Idea of derivation this estimator of variance matrix is as follows. Let us denote
y=vec(Y), W=Z"'®X, B=vec(B), and &= vec(g). Then, assuming
normality of observations, the growth curve model can be written as one-
dimensional model

y=WB+g, €:N_ (0,X®I).

Matrix S° is derived on the basis of the induced linear model
M, yy'M, = E(M,yy'M, ), e(M,yy'M, )}

For its exact derivation see Wu et al. (2009). Now we show the estimators
of unknown parameters for this estimator of variance matrix. We will use the

already used relations. Accordingly for matrix S holds the following

1
n—r(X)

(n-r(X))o*(1-p)(p-r(2))

E(Tr(s®))= E(Tr(S))+ % E(Tr(M,Y'YM,))—- E(Tr(M,Y'M,YM,,))

po’ +%n02(1—p)<p—r(2))—

2

= pc,

n—r(X)

E(L's®1)= E(U'S1)= ps®(1+(p-1)p).
Thus unbiased estimating equations are

Tr(S°)-ps® =0 and 1'S°1-p(l+(p-1)p)s° =0,
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which imply estimators of the form

O 10
6% = Tr(S7) and P, -1 [1S 3 -1| 4.1)
p p-1{Tr(S")

These estimators have the same form as Z-estimators and relations between
them will be shown in the next section.

Now we use the Ye-Wang's way of estimating. Let us denote

VO =PS°P, and VO =M,S°M,.

Then
1 1

Tr(V°) = —Tr11'Y'M, Y )+ —Tr(11'M..Y'YM., ) -
V)= aroo) LY MY )+ T M, Y'YM.,)

1

_  Tr11'M..Y'M,YM.,
= ;1'Y’MXY1
p(n—r(X))

consequently
E(Tr(V?))= @+ (p-1)p)o”.

Likewise

Tr(v2) = Tr((1 - P,)S®) = Tr(s®) —%1'301,

which implies
E(Tr(Vp))= (p-1)0*(1-p),
so unbiased estimating equations are
TV )- @+ (p-1)p)* =0 and Tr{V2)—(p-1)6>(1-p) = 0.

These equations imply estimators in the form

(0] O 0
620 - Tr(vl )+Tr(V2 ) and ;SO =1— P Tr(VZ )

: . (42)
p p-1 Tr(V2)+Tr(Vy)
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In the next step we derive properties of matrix S° and related estimators
(4.1) of unknown parameters. We need the next theorem derived by Ghazal

and Neudecker (2000).
Theorem. Consider vec L: N, (vec M,V ®U) and define S, = L’AL and
Sg=L'BL. Then for covariance of vec S, and vec S; applies

Cov(vecS,,vecS;)= Tr(A'UBUV®V + M'A'UBM ®V +

+VO®MAUBM+K [T(AUBUV®V+  (4.3)
+V ®M'A'UB'M + M'AUBM ® V]
For simplicity, let us denote
(0] 1 ’ 1 r 1 ’
S°= ———YMY+=M_YYM, —————M_Y'M,YM,,
n—r(X) n n—r(X)
= S+Q-W.

Then on the basis of theorem (4.3) and relation (3.2) we can write

Var (VeCS) = m (I p2 +K ppk): ® E),

Var (vecQ) = 1 (I 2 +K pp}M ,EM, @M, ZM,.)
n

Var (vecW) = ;(I 2 +K prM ,EIM, ® M, XM,,)

n—r(X)
and
Cov(vec S, vecQ)= %(MZ, ® MZ,)(l 2 +K pp)(2 RX)
Cov(vec S, vecW) = #(M L ®M,, )(I 2 +K pp)()l ®X),

n—r(X)
Cov(vec Q,vecW) = %(I 2 +K pp)(M LIM, @ M,IM,,).

So for variance of vec operator of matrix S° applies
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o)_ 1 2r(X)
Var (vecs® )= (n_r(x)lpz—m(Mz,®Mz,)J(l p2+Kppk2®2)+
r(X)

m(l 2 K pp)<M 2IMy ®M,IM,)

It is easy to see that in the case of uniform correlation structure it holds

T(M,Z))=c*A-p)2(p-r(2)’ and Tr(M,E%)=c*(1-p)*(p-r(2).
Using these relations we can derive the following

Var(Trs®)= (vecl , JVar(vecs® )(vec )
_ 2 2\ 2r(X) 2 r(X) 2
= n_r(x)[Tr(): )- . > MZ,)+TTr((MZ,):MZ,) )}
26"

= 102)2 "X 1 2 (p B B

Var(l'Sol) = (veas, )\/ar(vecsO XvecJ o)= %()()(1‘):1)2
2

_ 2_4 TR
- n—r(X)pG(l+(p Lp),

2
n—r(X)

1'x%1

Cov('s°1, Trs®) = (vecd , Var(vecs® vec 1, )=

_ 2 4 2
= T ™ (L+(p-D)p).

The estimator of o is unbiased seeing that E(&é): G°, SO mean square

error of this estimator is equal to its variance and applies

MSE(5% )= Var(5%o)= _ZfEX) -1+(pp_1)p2 [1+

N r(X)(1-p)*(p-r(Z))(p—r(Z)-2)
np(L+(p -1)p?)

1.
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The estimator of parameter p is biased as usual. To derive properties of

this estimator we will use the Taylor expansion. Using this we can find
expansions of mean and variance of ratio of two variables in the form

H

G)_E(G) Cov(G,H) EG) L
( )_E(H) SO (E(H))3Var(H)+O(n ) (@4

Var(gj: Var(G)  2E(G)

(E©)) _2
)T Ry e Var(H)+0(n°?) (45)

(E(H))*

Using relations

E(po) = pl_l(E(ir?;l)J_l} var(po)= (10}1)2 Var(ilr?;l)]

and expansions (4.4) and (4.5) we can derive that

1+(p-1p, 1-p
1- 1-
S p(1-p) . [ 5
r(Xx

« X @) (p-r(@)-21+0(n),
p(p—1)

v 2 (1+(p=p\T], 1+(p-D2-p)p S
Var(po)—n_r(x)( o1 j{l ) }+O(n)

Similarly, using the Taylor expansion, we get mean square errors in the
following form

E(fso): p—

X

MSE(@O): 2 (1_ )2 (1+(p—l)p)2 1+ r(X) y
n—r(X) p(p-1) np(p—1)
x(p-r(Z)(p-r(Z)-2)1+0(n?)
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A2 A 26° 1+(p—-1)p 1-p
MSE(6%,p, )= —————p(1— 1—
( ° po) n—r(X)p( P) p p §

NILIC. R ) 2
oo PT@Ne-r@) 2)}+0(n )

5. Comparisons and simulations

By the same way as described above we can derive that for Z-, M- and
B-estimators of unknown parameters in growth curve model with the uniform
correlation structure the following holds

E622=62,
4 _ 2
MSE 6% = Varg?, =20 1+(P-1)p"
n—r(X) p
A 2 1+(p-1p -2
Ep, =p— 1-p)—2E72P | o(n2)
P, =p n_r(x)p( ) ( )

MsEp, = 2 . (=p) L+ (p-1)p)? Lom?)
©n-r(X) p(p-1)

2 n ‘2 n 26° 1+(p-1 .
MSE(GZZ,pZ)= COV(Gzz,pz)z "= P(l—P)%Jro(n %),

£ &2y = 02{1_ r(X)(r(Z)+p(p—r(Z)))}
np
Varé®m = ¢* £[1+ (p —1)p2]+

42r(><)[p+p(p 10 ~(p-r(@)(A-p)’]

MSE 5°w = Varé’m +c %[r(Z)er(p—r(Z))] )
n"p



ESTIMATORS OF UNKNOWN PARAMETERS IN THE GROWTH CURVE MODEL... 17

1+(p-1p 5
(p-D)np-r(X)((p-r(@))p+r(2)f
2[p2(p—r(@) (1= p)r(X) + 2% (p—1)p(1-p) [+
2n[(1- p) p(p—r(Z))((P—r(Z)p + F(Z)r(X)? +
p?(p+r(Z)-2)(1-p)pr(X)]+
@-p)(p - ()P -r(@))p+r(2)*r(X)* +
2p%(r(2) -1)(1-p)pr(X)?}+0(n~?)

Epm =p-

X

+

+

+

MSEp,, = 2n3p3(p—1)(1—p)2[1+(p—41>p]2 o)
[np—r(X)(p-r(2)p+r(2)]*(p-1)*

MSE(&ZM,[S )262 2n*p*p(1-p)(1+(p-1)p) +o(n?),
) [np—r(X)((p - r(2))p + r@Z)[

2c* _ 1 y
n-r(X) p*[n(p-1)-r(X)(r(2)-1)]
«{np(p—DL+(p-1)p* |- r(I(r(2) -1)@p -1 (2) +
+(p-1)p?)+((p-Dp+(p-r@))I}

MSE 6°s = Varé’s =

5 20+ (p=D)p)(A=p)lnp(p-Dp~r(X)(pr(Z)p— p-rZ)p+r(2))] ,
p*[n*(p~1)—n(p+r(Z)-2r(X) +(r(2)-r(x)*]
+0(n?),

Mmsep, = 2 (A=plfLl+(p=Dp[ (- r(X)r(2))
" n-r(X)  p*[n(p-1)-r(X)(r(2)-1)]

Eps =

+0(n?)

MSE(S%e.,p5)= Cov(6%s,ps )= - _Zf(zx) (1- P)[lJIrO(p ~1p]

PP =Dp—rr@)(p-1)p=(P-r@)] | 52y
pln(p —1) - r(X)(r(Z) -1)]
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These estimators of unknown parameters in the growth curve model with
uniform correlation structure compares Zezula (2006). He shows that p, and

pg are less biased than p,,. On the ground of negative bias of estimators p,
and pg and from equality

£ by Ep, = 20V (P-DRP-r @I o)
p*(n—r()(p —n-+1(X) ~r(X)r(2))

it is implied that p, is always less biased than pg. Some simulations of this
difference as a function of parameter p are depicted in the Fig. 1.

Now we look at O —estimators. With an accuracy of n™* we compare these
estimators and show some simulations. Variance of Z-estimator of parameter p

is the same as the variance of O —estimator of this parameter and applies

Var(p,) = Var(p, ) =

+O(n‘2)

2 (1+(p-Dp) |, 1+(p-D@-p)p],
n-r(X)L  p-1 P
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Note that this term is nonnegative for all admissible values of p and p.
Next, if p=r(Z) or p =r(Z)+ 2 then these estimators have the same properties
as Z-estimators, so
MSE&%0 = Var 6°0 = MSE 6%z = Varé?z,

MSE(6%,po )= MSE(6%2,p, ), MSE p,, = MSEp2 and Ep, = E p,.
This situation occurs for example when we use Potthoff's and Roy's dental data.
Estimator p, is biased, in some cases positively biased and in some cases
negatively biased. For differences between Z- and B-estimators it holds

_ 20+ (p-DpJL-p)*(p-r@)(P-1(2)-2)

&bz ~Ebo 07 (p-D)(n—-r(X))

+O@*}

Ep,—Ep, = — 2(1-p)* A+ (P-)p)(P-r(D)r(X)
’ ° p*(n—r(X)(p —n+r(X)-r(X)r(2))

+O(n‘2)

and some simulations of these differences as functions of p are shown in the
figures 2 and 3.

oms{ o

s
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Estimators 620, &2z and &% are unbiased, while &% is biased and

always less then o®. The same data as above we use to show ratios
MSE 6% L MSE&% 1 and M SEG&%0

- L ———1an ———1 as functions of the parameter
MSEG“2 MSEG s MSEG“m

p as above (figures 4-6).
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The simulations are made for small values of time points (3-10) and bigger
number of subjects (10-100). On the basis of these pictures we can see that none
of considered estimators has uniformly minimal mean square error. But
estimators 6%z and &% seem to be better than estimator 6% in most cases.

We can consider 6°s better than 6°o for positive values of parameter p. On

the other hand estimator 6% seems to be better than estimator 6%u for positive
values of parameter p tend to one.

6. Example - Potthoff's and Roy's dental data

The growth curve model was considered in 1964 by Richard F. Potthoff
and Samarendra Nath Roy. They tried to answer the question, if the distance
between the center of the pituitary to the pterygomaxillary fissure is the same
for boys and girls and if its growth rate is the same for both groups. The
observations were collected from 11 girls and 16 boys at four different ages,
specifically 8, 10, 12, and 14 years. The obtained data (see Potthoff and

Roy, 1964) are displayed in the next figures.

Girls

Thick lines in both pictures represent averages in groups. On the basis of
this we can consider linear trend for boys and for girls. ANOVA matrix X,

matrix B of unknown parameters and matrix Z of regression constants for this
example are of the form:
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x:(lﬂ 016} B:(bll blz] and Zz(l 1 1 1}
0, 1, b,, b,, 8 10 12 14
We dealt with three estimators of variance matrix. With UMVUIE S,
maximum likelihood estimator S™ and outer product estimator S°. For dental
data these matrices are
5.4155
2.7168

3.9102
2.7102

2.7168
4.1848
2.9272
3.3172

3.9102
2.9272
6.4557
4.1307

2.7102
3.3172
4.1307 |
4.9857

5.0545
2.4578
3.6157
2.5320

2.4578
3.9582
2.7170
3.0392

3.6157
2.7170
5.9788
3.8217

2.5320
3.0392
3.8217
4.6292

M _

and

5.4262
o | 27080

3.8958
2.7228

2.7080
4.1624
2.9985
3.2771

3.8958
2.9985
6.3563
41732

2.7228

3.2771

41732 |

4.9708

Let us consider uniform correlation structure. Then various estimators of

unknown parameters derived in this article and residual sums of squares are in
the following table.

estimator of estimator of
parameter o? parameter p RSS
6%z =5.2604 p, =0.6245 S, =101.88
6°w = 4.9052 py =0.6178 S, =108.00
6%s =5.2207 ps =0.6318 S, =104.00
6% =5.2289 po = 0.6303 S, =103.55
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These estimators are very similar except for the maximum likelihood
estimators, which is reflected also by residual sums of squares.
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