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Summary 

We derive and compare different estimators of unknown parameters in the growth curve 

model with a uniform correlation structure based on various estimators of variance matrix. We 

deal with uniformly minimum variance unbiased invariant estimator (UMVUIE), maximum 

likelihood estimator and outer product estimator of variance matrix. In these cases we also show 

the orthogonal decomposition. 
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1. Introduction 

The growth curve model is a generalized multivariate analysis of variance 

model, which was introduced by Potthoff and Roy (1964). Standard model is of 

the form 



6 RATISLAV RUSNAČKO 

 

),(0,)(vec,= IΣεεXBZY  N:  

where pnY  is matrix of observations, mnX  is ANOVA matrix (so that 

)(X1 P ), rmB  is matrix of unknown parameters, prZ  is matrix of regression 

constants and in all article we will consider that ),(Z1 P  pnε  is matrix  

of random errors which has the normal distribution and ppΣ  is variance matrix 

of rows of matrix .Y  The vec operator stacks elements of a matrix into a vector 

column-wise and nnI  denotes identity matrix. In the most applications of the 

model, p  is the number of time points observed on each of the n  subjects and 

m  is the number of groups. This model is useful especially for modeling 

growths of living organisms and it represents a statistical model widely used in 

many fields of study such as biology, medicine, economy. There are many 

special cases of this model depending on the correlation structure. We will deal 

with uniform correlation structure, which has the following form  

  ,')(1= 2
11IΣ   (1.1) 

 where 0>2  and 1<<
1

1





p
 are unknown parameters, which we are 

interested in. 

Let us denote XP  orthogonal projector on column space )(XP  of a matrix 

X  and XX PIM =  orthogonal projector on its orthogonal complement. The 

important result is orthogonal decomposition in the growth curve model. 

Chinese mathematicians Jianhua Hu, Ren-Dao Ye and Song-Gui Wang came up 

with this idea in 2009. A simple transformation to change a model into an 

equivalent which allows to determine explicit forms of estimators. Let us 

consider generalized uniform correlation structure .= 21 wwGΣ   Ye and 

Wang (2009) examine the model ,= 2

1

2

1

2

1

FF MYGPYGYG


  where 

.= 2

1

wGF


 Many tasks, which are very difficult or impossible to handle in 

basic models, can be done with ease in models consisting of mutually 

orthogonal components. Note that generalized uniform correlation structure with 

,= IG  ,= 1w  )(1= 2

1   and  2

2 =  is reduced to structure 1)..(1  
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2.  Estimators based on UMVUIE of Σ  

Under normality, uniformly minimum variance unbiased invariant estimator 

of Σ  is defined as  

.
)(

1
= YMY

X
S X


 rn

 

By moment method, since   ,=E ΣS  unbiased estimating equations are  

  0,=ˆ1)(1)(Tr'and0=ˆ)(Tr 2  pp SS11S  

so estimators of unknown parameters are of the form  

 .1
)(Tr

'

1

1
=ˆand

)(Tr
=ˆ

ZZ
2














S

S11S

pp
 (2.1) 

These estimators were derived by Žežula (2006). Now we consider the modified 

model with orthogonal decomposition proposed by Ye and Wang  

,== 21 11 YMYPYYY   

where  .=,'
1

=,),1(1,= 111 PIM11P1 
p

  

If we denote  

,'
1

)(1==

,'
1

)(1==

2

112

2

111





















11ISMMV

11SPPV

p

p
 

then estimators of unknown parameters are of the form  

 .
)(Tr)(Tr

)(Tr

1
1=ˆ,

)(Tr)(Tr
=ˆ

21

2
YW

21
YW

2

VV

VVV










p

p

p
 (2.2) 

Klein and Žežula (2010) showed that YW
2

Z
2 ˆ=ˆ   and .ˆ=ˆ

YWZ   

Now we will have a look at estimators of unknown parameters for 

maximum likelihood estimator of Σ  and for outer product estimator of the 

variance matrix. 
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3.  Estimators based on maximum likelihood estimator of Σ  

Maximum likelihood estimator of matrix Σ  is in the form  

 .
1

= ZXZX

M
YMPYMYMYS 


n

 

The MLE of 2  and   are defined as above, but S  is replaced by .M
S  Thus  

 .1
)(Tr

'

1

1
=ˆand

)(Tr
=ˆ

MM
2














M

MM

S

1S1S

pp
 (3.1) 

For derivation of the estimators based on unbiased estimating equations in 

this case we will need ))(Tr(E M
S  and ).(E 1S1

M  The first matrix in M
S  is the 

matrix S  except for a constant. The problem is the second matrix. Knowing that  

   IΣXBZYIΣXBZY  ,vecvec),,( nppn NN ::  (3.2) 

we can write  

   ,=)(vecVar IΣMMYIM ZZZ    

so  

 .,)(vec IΣMM0YM ZZZ  npN:  

In the next step we will need the expected value theorem derived by Ghazal 

and Neudecker (2000). Let us consider matrix ),,(= qnpn  UTK  with 

),(=)(E NMK  and  

.==)vec(Var 








UUUT

TUTT

ΩΩ

ΩΩ
ΩK  

Let further ,= nIΦΩ   with  

.= 








UUUT

TUTT

ΦΦ

ΦΦ
Φ  

Ghazal and Neudecker showed that  
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.)(Tr=)(E ANMΩAAUT 
TU  

In particular,  

 .)(Tr=)(E AMMΩAATT 
TT  (3.3) 

On the basis of 3).(3  and the well known fact that ),(=)(Tr XPX r  

)(=)(Tr XMX rn   and 01MX =  holds following  

 

.)(
1)(

E
1

)(E
)(

=)(E

ZZ

ZXZ

M

ΣMMXΣ
X

YMPYMS
X

S


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





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r
nn
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Consequently  

     

)).()((1
)()(

')(1Tr)(
1)(

=TrE

22

22

Z
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11IMX
X

S Z

M

rp
n

r
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r
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p
n

rn











  

Similarly as above we can write  

      .1)(1
)(

='E
)(

='E 2


pp
n

rn

n

rn X
S11

X
1S1

M
 

Based on the unbiased estimating equations we can derive that these 

unbiased estimators of unknown parameters in this case are  

    
 

 
.1

'))()(()(Tr1)())((

'))()((1)))(((

1

1
=ˆ

,
))()((1)))((())((

'))()(()(Tr))((1)(
=ˆ

B

2
B

2























1S1ZXSX

1S1ZXX

ZXXX

1S1ZXSX

MM

M

MM

rprpprn

rprprnp

p

rprprnrnp

rpnrrnnpp

 (3.4) 

Now we use the orthogonal decomposition for this case. First modify 

matrix M
S  to the form  
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.
1)(

= ZXZ

M
YMPYMS

X
S 




nn

rn
 

Let us denote  

.=and= 112111 MSMVPSPV
MMMM

 

For traces of these matrices applies  

     

       ,TrTr=Tr=Tr

,'
1)(

Tr
1

Tr
)(

=Tr

112

1111

M

1

MMMM

ZXZ

SPSSMV

S11
X

PYMPYMPSPP
X

V











pn

rn
nn

rn

 

which implies  

    

    

 .1)(1
)(

))()((1
)()(

'E
1

))()((1
)()(

=TrE

,1)(1
)(

=TrE

222

22

2

2

1















p
n

rn
rp

n

r
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n

rn

p
rp

n

r
p

n

rn

p
n

rn

X
Z
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1S1Z
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Unbiased estimating equations are  

    0=ˆ1)(1ˆ
)(ˆTr 2

1 


 p
n

rn X
V

M
 

and  

    0.=ˆ1)(1ˆ
)(

))()(ˆ(1ˆ
)(ˆTr 22

2 pp
n

rn
rp

n

r





X
Z

X
V

M  

If we denote  

))(1)((

))()((
1=

X

ZX

rnp

rpr
a




  

then estimators of unknown parameters have the form  
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   

 
   
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1
1=ˆ

,
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Tr
))((

=ˆ
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
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
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

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





ap

p

arnp

n

B
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 (3.5) 

4.  Estimators based on outer product estimator of Σ  

Another estimator of matrix Σ  is defined as  

,
)(

11

)(

1
=O

ZXZZZX YMMYM
X

YMYMYMY
X

S 





 rnnrn
 

it is called the outer product estimator or quadratic least squares estimator of Σ . 

Idea of derivation this estimator of variance matrix is as follows. Let us denote 

),(vec= Yy  ,= XZW   ),(vec= Bβ  and ).(vec= εε  Then, assuming 

normality of observations, the growth curve model can be written as one-

dimensional model  

).,(,= IΣ0εεWβy  npN:  

Matrix O
S  is derived on the basis of the induced linear model  

    .,E= XXXXXX MyyMMyyMMyyM  e  

For its exact derivation see Wu et al. (2009). Now we show the estimators 

of unknown parameters for this estimator of variance matrix. We will use the 

already used relations. Accordingly for matrix O
S  holds the following  

 

          

,

))()((1))((
)(

1
))()((1

1

TrE
)(

1
TrE

1
TrE=)(TrE

2

222

O











 

p

rprn
rn

rpn
n

p

rnn

ZX
X

Z

YMMYM
X

YMYMSS ZXZZZ

 

     .1)(1='E='E 2O  ppS111S1  

Thus unbiased estimating equations are  

  0,=ˆˆ1)(1'and0=ˆ)(Tr 2O2O  ppp 1S1S  
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which imply estimators of the form  

 .1
)(Tr

'

1

1
=ˆand

)(Tr
=ˆ

O

O

O

O

O
2














S

1S1S

pp
 (4.1) 

These estimators have the same form as Z-estimators and relations between 

them will be shown in the next section. 

Now we use the Ye-Wang's way of estimating. Let us denote  

.=and= OO

2

OO

1 1111 MSMVPSPV  

Then  

   

 

Y1MY1
X

YMMYM11
X

YMYM11YMY11
X

V

X

ZXZ

ZZX


















'
))((

1

'Tr
))((

1

'Tr
1

'Tr
))((

1
=)(Tr O

1

rnp

rnp

nprnp

 

consequently  

    .1)(1=)(TrE 2O

1  pV  

Likewise  

  ,'
1

)(Tr=)(Tr=)(Tr OOOO

2 1S1SSPIV 1
p

  

which implies  

  ),(11)(=)(TrE 2O

2 pV  

so unbiased estimating equations are  

      0.=)ˆ(1ˆ1)(ˆTrand0=ˆˆ1)(1ˆTr 2O

2

2O

1  pp VV  

These equations imply estimators in the form  

 .
)(Tr)(Tr

)(Tr

1
1=ˆand

)(Tr)(Tr
=ˆ

O

2

O

1

O

2
O

O

2

O

1
O

2

VV

VVV










p

p

p
 (4.2) 
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In the next step we derive properties of matrix O
S  and related estimators 

1).(4  of unknown parameters. We need the next theorem derived by Ghazal 

and  Neudecker (2000).  

Theorem. Consider  UVML ,vecvec npN:  and define ALLSA
=  and 

.BLLSB
=  Then for covariance of ASvec  and BSvec  applies  

 

   
 

.
Tr

Tr=vec,vecCov

VAUBMMMBUAMV

VVAUBUKMBAUMV

VUBMAMVVUBUASS BA







pp
 (4.3) 

For simplicity, let us denote  

.=

)(

11

)(

1
=O

WQS

YMMYM
X

YMYMYMY
X

S ZXZZZX










rnnrn  

Then on the basis of theorem 3).(4  and relation 2).(3  we can write  

    

    

    ZZZZ

ZZZZ

ΣMMΣMMKI
X

W

ΣMMΣMMKIQ

ΣΣKI
X

S













ppp

ppp

ppp

rn

n

rn

2

2

2

)(

1
=vecVar

,
1

=vecVar

,
)(

1
=vecVar

 

and  

     

     

     .
1

=vec,vecCov

,
)(

1
=vec,vecCov

,
1

=vec,vecCov

2

2

2

ZZZZ

ZZ

ZZ

ΣMMΣMMKIWQ

ΣΣKIMM
X

WS

ΣΣKIMMQS














ppp

ppp

ppp

n

rn

n

 

 

So for variance of vec operator of matrix O
S  applies  
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      

  .
))((

)(

))((

)(2

)(

1
=vecVar

2

22

O

ZZZZ

ZZ

ΣMMΣMMKI
X

X

ΣΣKIMM
X

X
I

X
S

























ppp

pppp

rnn

r

rnn

r

rn  

It is easy to see that in the case of uniform correlation structure it holds  

     )).(()(1=Trand))(()(1=Tr 2422242
ZΣMZΣM ZZ rprp  

 

Using these relations we can derive the following  

      

      
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2
=

vecvecVarvec=TrVar
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4
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
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




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









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

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X
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X
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X
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ZZZZ

rprp
n

r
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n
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n

r
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        

  ,1)(1
)(

2
=

'
)(

2
=vecvecVarvec='Var

242

2OO





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X

Σ11
X
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      

  .1)(1
)(

2
=

'
)(

2
=vecvecVarvec=Tr,'Cov

24

2OOO






pp
rn

rn
pp

X

1Σ1
X

ISJS1S1

 

The estimator of 2  is unbiased seeing that   ,=ˆE 22

0   so mean square 

error of this estimator is equal to its variance and applies  

   

 
].

1)(1

2))())((())(1(

[1
1)(1
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2
=ˆVar=ˆMSE

2

2
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O
2

O
2


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


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

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The estimator of parameter   is biased as usual. To derive properties of 

this estimator we will use the Taylor expansion. Using this we can find 

expansions of mean and variance of ratio of two variables in the form  

 
   

 ,)(Var
)(E

)(E

)(E

),(Cov

)(

)(E
=E 2

32









nOH

H

G

H
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G

H

G
 (4.4) 

   
 
 

 .)(Var
)(E

)(E
),(Cov

)(E

)(E2

)(E

)(Var
=Var 2

4

2

32









nOH
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Using relations  
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and expansions 4).(4  and 5).(4  we can derive that  
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Similarly, using the Taylor expansion, we get mean square errors in the 

following form  
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5.  Comparisons and simulations 

By the same way as described above we can derive that for Z-, M- and  

B-estimators of unknown parameters in growth curve model with the uniform 

correlation structure the following holds  
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These estimators of unknown parameters in the growth curve model with 

uniform correlation structure compares Žežula (2006). He shows that Z̂  and 

B̂  are less biased than .ˆ
M  On the ground of negative bias of estimators Z̂  

and B̂  and from equality  
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it is implied that Z̂  is always less biased than .ˆ
B  Some simulations of this 

difference as a function of parameter   are depicted in the Fig. 1. 
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Note that this term is nonnegative for all admissible values of p  and .  

Next, if )(= Zrp  or 2)(= Zrp  then these estimators have the same properties 

as Z-estimators, so 
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negatively biased. For differences between Z- and B-estimators it holds  
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and some simulations of these differences as functions of   are shown in the 

figures 2 and 3.  

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. 
OZ
ˆEˆE      Fig. 3. 

OB
ˆEˆE   
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Estimators ,ˆ O
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The simulations are made for small values of time points (3-10) and bigger 

number of subjects (10-100). On the basis of these pictures we can see that none 

of considered estimators has uniformly minimal mean square error. But 

estimators Z
2̂  and B

2̂  seem to be better than estimator O
2̂  in most cases. 

We can consider B
2̂  better than O

2̂  for positive values of parameter .  On 

the other hand estimator O
2̂  seems to be better than estimator M

2̂  for positive 

values of parameter   tend to one. 

6.  Example - Potthoff's and Roy's dental data 

The growth curve model was considered in 1964  by Richard F. Potthoff 

and Samarendra Nath Roy. They tried to answer the question, if the distance 

between the center of the pituitary to the pterygomaxillary fissure is the same 

for boys and girls and if its growth rate is the same for both groups. The 

observations were collected from 11 girls and 16  boys at four different ages, 

specifically 8,  10,  12,  and 14  years. The obtained data (see  Potthoff and 

Roy, 1964) are displayed in the next figures. 

     

 

Thick lines in both pictures represent averages in groups. On the basis of 

this we can consider linear trend for boys and for girls. ANOVA matrix ,X  

matrix B  of unknown parameters and matrix Z  of regression constants for this 

example are of the form:  
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We dealt with three estimators of variance matrix. With UMVUIE ,S  

maximum likelihood estimator M
S  and outer product estimator .O

S  For dental 

data these matrices are 









































4.62923.82173.03922.5320

3.82175.97882.71703.6157

3.03922.71703.95822.4578

2.53203.61572.45785.0545

=

,

4.98574.13073.31722.7102

4.13076.45572.92723.9102

3.31722.92724.18482.7168

2.71023.91022.71685.4155

=

M
S

S

 

 and  

.

4.97084.17323.27712.7228

4.17326.35632.99853.8958

3.27712.99854.16242.7080

2.72283.89582.70805.4262

=O





















S  

Let us consider uniform correlation structure. Then various estimators of 

unknown parameters derived in this article and residual sums of squares are in 

the following table. 

estimator of 

parameter 
2  

 estimator of 

parameter    RSS 

5.2604=ˆ Z
2  0.6245=ˆ

Z  101.88=eS  

4.9052=ˆ M
2  0.6178=ˆ

M  108.00=eS  

5.2207=ˆ B
2  0.6318=ˆ

B  104.00=eS  

5.2289=ˆ O
2  0.6303=ˆ

O  103.55=eS  
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These estimators are very similar except for the maximum likelihood 

estimators, which is reflected also by residual sums of squares. 
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