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Modelling of the 2D convective heat exchange between subjected to freezing
and to following defrosting logs and the surrounding environment
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Abstract: Modelling of the 2D convective heat exchange between subjected to freezing and to following
defrosting logs and the surrounding environment. A 2D mathematical model for the computation of the
temperature on the logs’ surfaces perpendicular to the radius, fy, and perpendicular to the frontal side, ¢,,, and
also the non-stationary temperature distribution in the longitudinal sections of subjected to freezing and
following defrosting logs at convective exponentially changing boundary conditions has been presented. The
model includes mathematical descriptions of the thermal conductivity in radial and longitudinal directions, A,
and A, the effective specific heat capacity, c., and the density, p, of the non-frozen and frozen wood, and also of
the heat transfer coefficient between the surrounding air environment and the radial and longitudinal directions
of horizontally situated logs, a, and a, respectively. With the help of the model, as an example, computations
have been carried out for the determination of a,, o, s, Zsp, Asr, Asp, and the temperature chage in the center of
beech log with diameter of 0.24 m, length of 0.48 m, initial temperature 20 °C , and moisture content 0.6 kg-kg’l,
during its 50 h freezing and its 50 h following defrosting at an exponentially changing air temperature during
freezing from 20 °C to —20 °C and during defrosting from —20 °C to = 20 °C.

Keywords: 2D modelling, beech log, freezing, defrosting, heat transfer coefficient, surface temperature,
temperature distribution

INTRODUCTION

It is known that the duration of the thermal treatment of the frozen logs in the winter
aiming at their plasticizing for the production of veneer and also the energy consumption
needed for this treatment depend on the degree of the logs’ icing [1, 2, 9, 10].

In the specialized literature there are very limited reports about the temperature
distribution in subjected to defrosting frozen logs [4, 8] and there is no information at all
about the temperature distribution in logs during their freezing. That is why the modelling and
the multi parameter study of the freezing process of logs are of considerable scientific and
practical interest.

The aim of the present work is to present a 2D mathematical model for the computation
of the temperature on the cylindrical logs’ surfaces and the non-stationary temperature
distribution in the longitudinal sections of subjected to freezing logs at convective
exponentially changing boundary conditions. For the achieving of this goal, as a base, a
model of the heating and cooling processes of logs is used, which has been suggested and
modified earlier by the first co-author [3, 4].

MECHANISM OF THE 2D HEAT DISTRIBUTION IN LOGS SUBJECTED TO
FREEZING AND FOLLOWING DEFROSTING

The mechanism of the heat distribution in logs during their heating or cooling can be
described by the equation of the heat conduction [3, 4]. When the length of the logs does not
exceed their diameter by at least 3 + 4 times, then the heat transfer through the frontal sides of
the logs can not be neglected, because it influences the change in temperature of their cross
sections, which are equally distant from the frontal sides [1, 2]. In such cases, for the
calculation of the change in the temperature in the longitudinal sections of the logs (i.e. along
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the coordinates » and z of these sections, refer to Fig. 1) during their freezing the following 2D
model can be used [4]:
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with an initial condition

7(r,z,0)=T,
2)

and boundary conditions for convective heat transfer:
* along the radial coordinate » on the logs’ surface during freezing and defrosting process:
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+ along the longitudinal coordinate z on the logs’ surface during freezing and defrosting
process:
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The mathematical model of the logs’ freezing process, which consists of egs. (1) + (6)
can be solved without any simplification with the help of the explicit form of the finite-
difference method [2, 4]. For this purpose the calculation mesh can be built on % of the
longitudinal section of the log due to the circumstance that this 4 is mirror symmetrical
towards the remaining % of the same section (Figure 1).
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Figure 1. Positioning of the knots of the calculation mesh on % of the longitudinal section of a log
subjected to freezing and following defrosting

For the solving of the mathematical model (1) + (6) it is needed to have mathematical
descriptions of all variables in it. Such descriptions are given and explane below.
MATHEMATICAL DESCRIPTION OF THE TEMPERATURE OF THE FREEZING AND
DEFROSTING AIR MEDIUMS

It is possible to have two cases for freezing of different materials in freezers. The first
case is when the material is put into a working freezer with constant unchanged temperature

in it and, consequently, the freezing medium temperature 7, rff (t)=T, nt;ro = const.

The mathematical model (1) + (6) obtains more complicated boundary conditions in the
second case, when the material is put into a non-working freezer and after that the freezer is

switched on. In this case, the temperature of the air environment in the freezer 7, nflr decreases
exponentially with time according to the equation

fi fi fi fi T

exp

(7

The defrosting of the frozen materials after opening of the fteezer’s door is realized at
exponential increasing of the air temperature according to the equation

exp

dfr dfr dfr fr T—Tx
Tm :Tml _(Tml _Tml)exp{_ dfrf J

(8)

MATHEMATICAL DESCRIPTION OF THE HEAT TRANSFER COEFFICIENTS
BETWEEN THE AIR AND THE LOGS DURING THEIR FREEZING AND DEFROSTING

The freezing and defrosting of the wood materials at atmospheric environment or in a
freezer takes place in the conditions of free convection. For the calculation of the heat transfer
coefficients in such conditions of heating or cooling of horizontally situated logs (refer to Fig.
1) Chudinov [1] suggests the following equations:

fr
aff(0,2,1) ~ 0.997 4/A_RT —0.997 # r (0,2,13? Ih)

©)
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o (1,0,7) ~ 3,49+ 0.093AT = 3.49+0.093(T(1,0,1) T, ()| at AT <10 K,
(11)

o8 (,0,7) =349+ 0.093[7% (1)~ T(1,0,7)| at AT <10 K,
(12)

o (r,0,7) ~ 2,486 YAT =2.4867 (0,1~ T ()| at AT>10 K,
(13)

ad’(r,0,1) = 2.486[Trgfr(r)—T(r,0, T)J at AT>10 K.
(14)

More precise equations for the determination of the heat transfer coefficients between
the freezing and defrosting air mediums and logs’ surfaces in radial direction and in direction
parallel to the wood fibers can be obtained after suitable experiments have been carried out.
MATHEMATICAL DESCRIPTION OF THE THERMO-PHYSICAL CHARACTERISTICS
OF THE LOGS

The solution of the non-linear 2D mathematical model of the logs’ freezing and
defrosting processes, which is presented by equations (1) = (14), can be realized using the
given in [2, 4, 5] mathematical descriptions of the effective heat capacity of the frozen and
non-frozen wood, c., the density of frozen and non-frozen wood, p, and the thermal
conductivity of the frozen and non-frozen wood, A, and A,. With the help of the mathematical
description of A, and A, the current values of the thermal conductivities on the logs’ surfaces
A (0,2,7) and A, (r,0,7), which participate in egs. (3) + (6) can be calculated also during

the solving of the model.

RESULTS AND DISCUSSION
Tdfr Otfr Otdfr fr

The suggested above mathematical descriptions of Tnl;r , Ty 5 O, O, Oy, and oI

P> p
are introduced in the earlier created and later modified by the first co-author non-stationary
model of the heating and cooling of cylindrical wood materials [3, 4]. This model is presented

in common form by the egs. (1) + (6). The updated model with the descriptions of Tnflr , Trgfr,

fr dfr fr dfr
ro Op 5 Oy, and (O

difference method in a way, analogous to the one used and described in [4] for the solution of
a model of the heating and cooling process of cylindrical wood materials. For the solution of
the updated model a software program has been prepared in the calculation environment of
Visual Fortran Professional.

With the help of the program as an example computations have been carried out for the
determination of the 2D change of the temperature in the longitudinal sections of subjected to

50 hours freezing at r, =—20 °C and following 50 h defrosting at 3% =20 °C beech

ml =

o has been solved with the help of explicit schemes of the finite

(Fagus Silvatica L.) log.

70



The freezing and defrosting processes of beech log with a diameter of D = 0.24 m (i.e.
with radius of R=0.12 m), length of L=0.48 m, moisture content u =0.6 kg-kg_1 , and

initial temperature ¢z, =20 °C have been studied. A log with such u contains maximum
possible quantity of bound water and contains a significant quantity of free water, too.

The decreasing of ¢ from the value of ¢ =, =20 °C to ¢ =-20 °C = const and

dfr
m

dfr

from ¢ =-20 °C=const to ¢

=19 ~3600 s. The calculated according to eqs. (7)

exp ~  “exp

dfr
m

the following increasing of ¢ =20 °C = const go

exponentially with time constants t

and (8) exponential change of trf; and ¢ " with these time constants can be seen on the Figure

2 for the curve of ¢, .

The calculations have been done with average values of basic density of beech wood py,
=560 kg'm™ and fiber saturation point at 293.15 K (i.e. at 20 °C) of this wood ufzs?f'ls =0.31
kgkg” [7].

For the computations of the log’s freezing and defrosting processes the mathematical
descriptions of the thermal conductivity, the effective heat capacity and the density of the
subjected to defrosting wood have been used [2, 4, 5]. The not large difference (so named
hysteresis) between these thermo-physical characteristics during freezing and defrosting of
the wood [1] needs to be additionally studied, mathematically described, and input into the
updated model.

On Figure 2 the computed change in the freezing and defrosting medium temperatures,

tg and tglfr (see curve f,,), in the surface temperatures at points 0, A and B (refer to Fig.1) of

the log (see curves #g, o, ty g and £y, g =1, () and also in the temperature in the central

point of the log, ¢, during the freezing and defrosting, is shown. On Figure 3 the computed

change in the heat transfer coefficients between the log’s surfaces in longitudinal and radial
directions and also the change in the thermal conductivities in longitudinal and radial wood
directions at points 0, A, and B on the log’s surfaces and in the log’s center (refer to Fig. 1), during the
freezing and defrosting processes, is shown.
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Figure 2. Change in ¢y, t, t, and ¢, of beech log with D =0.24 m, L =0.48 m, u = 0.6 kg‘kg'l, and ¢,
=20 °C during its 50 h freezing at —20 °C and during its 50 h following defrosting at 20 °C, depending
ont
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Figure 3. Change in a, and a,, (left) and in Ay,, A, Agp, and A, (right) of beech log with D =0.24 m, L
=0.48 m, u=0.6 kg-kg", and 7, = 20 °C during its 50 h freezing at —20 °C and during its 50 h
following defrosting
at 20 ° C, depending on 1

The obtained results lead to the following conclusions:

1. On the curve of situated on the log’s centre characteristic point on Fig. 2 the specific
almost horizontal section of retention of the temperature ¢, for a long period of time in the
range from —1 °C to —2 °C can be seen, while at this point a complete freezing of the free
water in the wood occurs and also after that while at this point a complete defrosting of the
frozen free water occurs. Such retention of the temperature on the logs’ axis has been
observed in wide experimental studies during the defrosting process of pine logs containing
ice from the free water [8].

2. The character of the change in the heat transfer coefficients, a, and a, is almost
identical during the studied freezing and defrosting processes of log with a given value of the
wood moisture content (Fig. 3-left). According to eqgs. (9) +~ (14) the current values of these
coefficients depend mainly on the current differences AT between the freezing or defrosting
medium temperature and the temperature in the concrete point on the log’s surface. With the

increase of the duration of the freezing processes a, and a; decrease because of the decreasing
of AT.

An important point of note is that at A7 =0 in egs. (11) and (12) oclf)r(r,(), T)= ocgfr =3.49

(refer to Fig. 2-left). This is in contradiction to the physical law of thermal exchange between
the log’s surface and the air environment because at AT = 0 this exchange must be equal to 0
such as in eq. (9), (10), (13), and (14). This means that eqs. (11) and (12) need further
clarification.

3. The character of the change in the wood thermal conductivity on the log’s surfaces,
Asp and A , and in the log’s centre, A¢, and A, is very complex (Fig. 3-right). The current
values of these conductivities depend not only on the wood moisture content and on the
current temperature at the respective log’s points, but also on the momentous aggregate
condition of the water at these points [5]. The larger values of A, Ag , Acp and Aer on Fig. 3-
right related to the frozen log’s surface or central point, and the lower values of Ag,, Agr , Acp
and A, related to the log’s points with non-frozen free water in them at respective moments.

CONCLUSIONS

This paper presents 2D mathematical model for the computation of the temperature on
the logs’ surfaces and the non-stationary temperature distribution in the longitudinal section
of subjected to freezing and to following defrosting logs at convective exponentially changing
boundary conditions. As a base, a model of the heating and cooling processes of logs is used,
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which has been created and modified earlier by the first co-author. The mechanism of the heat
distribution in the logs during their freezing and defrosting is described by the 2D partial
differential equation of heat conduction. For the numerical solution of the model a software
program has been prepared in the calculation environment of Visual Fortran Professional.
With the help of the program computations have been carried out for the determination of the
2D change in the temperature of the longitudinal section of beech log with D = 0.24 m, L =
048 m, u = 0.6 kg'kg', and 7o = 20 °C during its 50 hours freezing at exponentially
decreasing air temperature until reaching of —20 °C and during the following 50 h defrosting
at exponentially increasing air temperature until reaching of 20°C. The results presented on
the figures in this paper show that the procedures for calculation of the non-stationary 2D
temperature change in the prepared software program functions well for the mutually
connected processes of the freezing and the defrosting of the logs at convective boundary
conditions. The obtained results show the complex character of the change in the temperature
on the logs’ surfaces and in the longitudinal logs’ section, and also of the heat transfer
coefficient between the logs’ surfaces and the processing freezing or defrosting air
environment. Also the change in the wood thermal conductivity on the logs’ surfaces and at
the separate points in the logs, especially strong depending on the aggregate condition of the
water at each point at every moment of the studied processes, has a very complex character.

The created model can be used for a science-based determination and automatic control
[4, 6] of the duration of the logs’ freezing processes at different initial and boundary
conditions.
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SYMBOLS

c = specific heat capacity (J-kg™"-K™)

D = diameter (m)

eXp = exponent

L = length (m)

r = radial coordinate (m): 0 < r <R
R =radius (m)
t = temperature (°C): r=T—273.15
T  =temperature (K): 7=1¢+273.15
u = moisture content (kg-kg™): u= W/100
W =moisture content (%): W= 100u
z = longitudinal coordinate (m): 0 < z <L/2
o = heat transfer coefficient between the log’s surface and the surrounding air
environment
(W-m?K™)

A = difference (for the temperature)
A = thermal conductivity (W-m™-K™)
p  =density (kg'm™)

T = time or time constant of the exponent (s)

SUBSCRIPTS AND SUPERSCRIPTS

A =point on the logs’ surface and longitudinal axe (refer to Fig. 1)
b = basic (for density, based on dry mass divided to green volume)
B =point on the logs’ surface and radial axe (refer to Fig. 1)
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c = center (for the temperature or the thermal conductivity on the logs’ center)
dfr = defrosting

e = effective (for the specific heat capacity of the frozen and non-frozen wood)

exp = exponent (for the time constant of the exponentially change in the air temperature)
fr = freezing (for the temperature or for the heat transfer coefficient of the processing
medium)

fsp = fiber saturation point of the wood

m = medium (for the temperature of the freezing air)

m0 = initial (for the medium temperature at the beginning of the logs’ freezing or
defrosting)

ml = end (for the medium temperature at the end of the logs’ freezing or defrosting)

p = parallel to the wood fibers

r = radial direction

sp = surface on the direction parallel to the wood fibers

st =surface on the radial direction

0 = initial (for the radial, longitudinal, and time coordinates or for the average mass

temperature of the logs at the beginning of the freezing process)
293.15 = at 293.15 K, i.e. at 20 °C (for the value of the fiber saturation point of wood species)

REFERENCES

1. CHUDINOV, B. S., 1966: Theoretical research of thermo physical properties and thermal
treatment of wood. Dissertation for DSc., SibL TI, Krasnoyarsk, USSR (in Russian).

2. DELIISKI, N., 2003: Modeling and technologies for steaming of wood materials in
autoclaves. Dissertation for DSc., University of Forestry, Sofia (in Bulgarian).

3. DELIISKI, N., 2004: Modelling and automatic control of heat energy consumption
required for thermal treatment of logs. Drvna Industria 55 (4), 181-199.

4. DELIISKI, N., 2011: Transient heat conduction in capillary porous bodies. In Ahsan A.
(ed) Convection and Conduction Heat Transfer. InTech Publishing House, Rieka, 149-
176.

5. DELIISKI, N., 2013: Computation of the wood thermal conductivity during defrosting of
the wood. Wood research, 58 (4), 637-650.

6. HADIJIISKI, M., 2003: Mathematical models in advanced technological control systems.
Automatic & Informatics 37 (3), 7-12, Sofia (in Bulgarian).

7. NIKOLOV, S., VIDELOV, H., 1987: Handbook for wood drying. Zemizdat, Sofia (in
Bulgarian).

8. STEINHAGEN, H. P., 1991: Heat transfer computation for a long, frozen log heated in
agitated water or steam — A Practical Recipe. Holz als Roh- und Werkstoft, 49(7-8), 287-
290.

9. TREBULA, P., KLEMENT, I., 2002: Drying and hydro-thermal treatment of wood.
Technical University in Zvolen, Slovakia, (in Slovak).

10. VIDELOV, H., 2003: Drying and thermal treatment of wood, University of Forestry,
Sofia, Bulgaria, 2003 (in Bulgarian).

74



Streszczenie: Modelowanie konwekcyjnej wymiany ciepta pomiedzy kiodami w procesie
zamrazania i odmrazania, a otoczeniem. Zaproponowano dwuwymiarowy model
matematyczny rozkladu temperatur na przekrojach ktod prostopadtych do ich pobocznicy i
cz6t, w warunkach konwekcyjnej wymiany ciepta z otoczeniem przy ich zamrazaniu i
odmrazaniu. Model zawiera opisy matematyczne przewodnosci cieplnej w kierunkach
wzdluznym 1 poprzecznym, pojemnosci cieplnej 1 gestosci drewna zamrozonego i
niezamrozonego, oraz konwekcyjnej wymiany ciepta z otoczeniem w tych dwoch kierunkach.
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