PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2010 | 59 | 3 |
Tytuł artykułu

Chromate reduction by cell-free extract of Bacillus firmus KUCr1

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Microbial enzymatic reduction of a toxic form of chromium [Cr(VI)] has been considered as an effective method for bioremediation of this metal. This study reports on the in vitro reduction of Cr(VI) using cell-free extracts from a Cr(VI) reducing Bacillusfirmus KUCr1 strain. Chromium reductase was found to be constitutive and its activity was observed both in soluble cell fractions (S₁₂and S₁₅₀) and membrane cell fraction (P₁₅₀). The reductase activity of S₁₂ fraction was found to be optimal at 40 μM Cr(VI) with enzyme concentration equivalent to 0.493 mg protein/ml. Enzyme activity was dependent on NADH or NADPH as electron donor; optimal temperature and pH for better enzyme activity were 70°C and 5.6, respectively. The Km value of the reductase was 58.33 μM chromate having a Vmax of 11.42 μM/min/mg protein. The metabolic inhibitor like sodium azide inhibited reductase activity of membrane fraction of the cell-free extract. Metal ions like Cu²⁺, Co²⁺, Ni²⁺ and As³⁺ stimulated the enzyme but others, such as Ag⁺, Hg²⁺, Zn²⁺, Mn²⁺, Cd²⁺ and Pb²⁺, inhibited Cr(VI) reductase activity.
Wydawca
-
Rocznik
Tom
59
Numer
3
Opis fizyczny
p.185-190,fig.,ref.
Twórcy
autor
  • Department of Microbiology, University of Kalyani, Kalyani 741235, India
  • Department of Microbiology, University of Kalyani, Kalyani 741235, India
  • Department of Microbiology, University of Kalyani, Kalyani 741235, India
Bibliografia
  • Abe F., T. Miura, T. Nagahama, A. Inoue, R. Usami and K. Horikoshi. 2001. Isolation of a highly copper-tolerant yeast, Cryptococcus sp., from the Japan trench and the induction of superoxide dismutase activity by Cu²⁺. Biotechnol. Lett. 23: 2027-2034.
  • Bopp L.H. and H.L. Ehrlich. 1988. Chromate resistance and reduction in Pseudomonasfluorescens strain LB300. Arch. Microbiol. 150: 426-431.
  • Branca M.. A. Dessi, H. Koziowsi, G. Micera and J. Swiatek. 1990. Reduction of Chromate ions by glutathione tripeptide in the presence of sugar ligands. J. Inorg. Biochem. 39: 217-226.
  • Camargo F.A.O., B.C. Okeke, F.M. Bento and W.T. Frankenberger. 2003. In vitro reduction of hexavalent chromium by a cell-free extract of Bacillus sp. ES29 stimulated by Cu. Appl. Microbiol. Biotechnol. 62: 569-573.
  • Campos J., M. Martinez-Pacheco and C. Cervantes. 1995. Hexavalent-chromium reduction by a chromate-resistant Bacillus sp. strain. Anionie van Leeuwenhoek 68: 203-208.
  • Cervantes C, J.C. Garcia, S. Devars, F.G. Corona, H.L. Tavera, J.C. Guzman and R.M. Sanchez. 2001. Interactions of chromium with microorganisms and plants. FEMS Microbiol. Rev. 25: 335-347.
  • Cheung K.H. and J.D. Gu. 2007. Mechanism of hexavalent chromium detoxification by microorganisms and bioremediation application potential: A review. Int. Biodet. Biodegrad. 59: 8-15.
  • Cheung K.H., H.Y. Lai and J.D. Gu. 2006. Membrane-associated hexavalent chromium reductase of Bacillus megaterium TKW3 with induced expression. J. Microbiol. Biotechnol. 16, 855-862.
  • Desai C, J. Kunal and M. Datta. 2008. Hexavalent chromate reductase activity in cytosolic fractions of Pseudomonas sp. G1DM21 isolated from Cr(VI) contaminated industrial landfill. Process Bichem. 43: 713-721.
  • Ettinger M.J. 1984. Copper metabolism and diseases of copper metabolism, pp. 175-230. In: R. Lontie (ed). Copper Proteins and Copper Enzymes. CRC, Boca Raton.
  • Ganguli A. and A.K. Tripathi. 2002. Bioremediation of toxic chromium from electroplating effluent by chromate-reducing Pseudomonas aeruginosa A2Chr in two bioreactors. Appl. Microbiol. Biotechnol. 58: 416-420.
  • Garbisu C, I. Alkorta, M.J. Llama and J.L. Serra. 1998. Aerobic chromate reduction by Bacillus subtilis. Biodegrad. 9: 133-141.
  • Horitsu H., S. Futo, Y. Miyazawa, S. Ogai and K. Kawai. 1987. Enzymatic reduction of hexavalent chromium by hexavalent chromium tolerant Pseudomonas ambigua G-1. Agric. Biol. Chem. 51: 2417-2420.
  • Iftikhar S., M. Faisal and S. Hasnain. 2007. Cytosolic reduction of toxic Cr(VI) by indigenous microorganism. Res. J. Env. Sci. 1: 77-81.
  • Ishibashi Y., C. Cervantes and S. Silver. 1990. Chromium reduction in Pseudomonas putida. Appl. Environ. Microbiol. 56: 2268-2270.
  • Losi M.E., C. Amrhein and W.T. Frankenberger. 1994. Environmental biochemistry of chromium. Rev. Environ. Contain. Toxicol. 36: 91-121.
  • Lovley D.R. and E.J.P. Phillips. 1994. Reduction of chromate by Desulfovibrio vulgaris and its cytochrome. Appl. Environ. Microbiol. 60: 726-728.
  • Lowry O.H., N.J. Resebrough and A.L. Farr. 1951. Protein measurement with the folin-phenol reagent. J. Biol. Chem. 193: 265-275.
  • McLean J. and T.J. Beveridge. 2001. Chromate reduction by a pseudomonad isolated from a site contaminated with chromated copper arsenate. Appl. Environ. Microbiol. 67: 1076-1084.
  • Myers C.R., B.P. Carstens, W.E. Antholine and J.M. Myers. 2000. Chromium (VI) reductase activity is associated with the cytoplasmic membrane of anaerobically grown Shewanellaputri-faciens MR-1. J. Appl. Microbiol. 88: 98-106.
  • Ohtake H. and S. Silver. 1994. Bacterial detoxification of toxic chromate. pp. 403-415. In: G.R. Choudhuri (ed). Biological Degradation and Bioremediation of Toxic Chemicals. Discorides Press, Portland.
  • Pal A., S. Dutta and A.K. Paul. 2005. Reduction of hexavalent chromium by cell-free extract of Bacillus sphaericus AND 303 isolated from serpentine soil. Curr. Microbiol. 66: 327-330.
  • Park C.H., B. Keyhan, B. Wielinga, S. Fendorf and A. Matin. 2000. Purification to homogeneity and characterization of a novel Pseudomonas putida Chromate reductase. Appl. Environ. Microbiol. 66: 1788-1795.
  • Sau G.B., S. Chatterjee, S. Sinha and S.K. Mukherjee. 2008. Isolation and characterization of a Cr(VI) reducing Bacillus firmus strain from industrial effluents. Polish J. Microbiol. 57: 327-332.
  • Shakoori A.R., S. Tahseen and R.U. Haq. 1999. Chromium-tolerant bacteria isolated from industrial effluents and their use in detoxification of hexavalent chromium. Folia Microbiol. 44: 50-54.
  • Shen H. and Y.T. Wang. 1993. Characterization of enzymatic reduction of hexavalent chromium by Escherichia coli ATCC 33456. Appl. Environ. Microbiol. 59: 3771- 3777.
  • Shi X. and N.S. Dalal. 1990. On the hydroxyl radical formation in the reaction between hydrogen peroxide and biologically generated chromium(V) species. Arch. Biochem. Biophys. 277: 342-350.
  • Suzuki T., N. Miyata, H. Horitsu, K. Kawai, K. Tsakamizawa, Y. Tai and M. Okazaki. 1992. NAD(P)H dependent chromium (VI) reductase of Pseudomonas ambigua G-1: A Cr(V) intermediate is formed during the reduction of Cr(VI) to Cr(III). J. Bacteriol. 174: 5340-5345.
  • Thacker U. and M. Datta. 2005. Reduction of toxic chromium and partial localization of chromium reductase activity in bacterial isolate DM1. World J. Microbiol. Biotechnol. 21: 891-899.
  • Urone F.E. 1955. Stability of colorometric reagent for chromium. S-diphenylcarbazides in various solvents. Anal. Chem. 27: 1354-1355.
  • Wang P.C., T. Mori, K. Toda and H. Ohtake. 1990. Membrane associated chromate reductase activity from Enterobactor cloacae. J. Biotechnol. 172: 1670-1672.
  • Wang Y.T. and C. Xiao. 1995. Factors affecting hexavalent chromium reduction in pure cultures of bacteria. Water Res. 29: 2467-2474.
  • Xu X.R., H.B. Li and J.D. Gu. 2004. Reduction of hexavalent chromium by ascorbic acid in aqueous solutions. Chemosphere 57: 609-613.
  • Xu X.R., H.B. Li, J.D. Gu and X.Y. Li. 2005. Kinetics of the reduction of chromium (VI) by vitamin C. Environ. Toxicol. Chem. 24: 1310-1314.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-3f683ecf-4781-4625-9a20-ca1aee805a7b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.