PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2015 | 159 | 09 |
Tytuł artykułu

Porównanie dokładności zdalnych metod szacowania wysokości drzew

Warianty tytułu
EN
Comparison of the accuracy of remote methods of tree−height estimation
Języki publikacji
PL
Abstrakty
EN
The presented study deals with new capabilities of tree height estimation based on the remote sensing techniques. The main goal of this study is to find out the accuracy of tree height estimation based on LiDAR data and stereo−photogrammetric measurements. The area of investigation is located in the Western Sudetes Mountains (southern Poland). There were 75 trees chosen (Picea sp.) and measured using three different methods: traditional field measurements, stereo – photogrammetric observations and Airborne Laser Scanning (ALS). Tree heights estimated using LiDAR data and stereo−photogrammetric measurements were compared to heights acquired in the field. The mean tree height difference between LiDAR and field measurements was 0.60 m (RMSE=1.47 m), whereas the mean tree height difference between stereo−photogrammetric measurements and field equaled to –0.55 m (RMSE=1.04 m). The obtained results allow the conclusion to be drawn that Airborne Laser Scanning and stereo−photogrammetric observations are competitive with traditional methods of forest parameters measurements owing to the automation and accuracy of surveys. This study has confirmed that remote sensing techniques are effective and reliable methods of obtaining data for forest inventory.
Wydawca
-
Czasopismo
Rocznik
Tom
159
Numer
09
Opis fizyczny
s.714-721,rys.,tab.,bibliogr.
Twórcy
autor
  • Instytut Badawczy Leśnictwa, ul.Braci Leśnej 3, Sękocin Stary, 05-090 Raszyn
autor
  • Instytut Badawczy Leśnictwa, ul.Braci Leśnej 3, Sękocin Stary, 05-090 Raszyn
  • Dyrekcja Generalna Lasów Państwowych, ul.Grójecka 127, 02-124 Warszawa
Bibliografia
  • Baltsavias E. P. 1999. A comparison between photogrammetry and laser scanning. ISPRS Journal of photogrammetry and Remote Sensing 54 (2): 83-94.
  • Banin L., Feldpausch T. R., Phillips O. L., Baker T. R., Lloyd J., Affum-Baffoe K., Arets E. J. M. M., Berry N. J., Bradford M., Brienen R. J. W., Davies S., Drescher M., Higuchi N., Hilbert D., Hladik A., Lida Y., Abu Silam K., Kassim A. R., King D. A., Lopez-Gonzalez G., Metcalfe D., Nilus R., Peh K. S.-H., Reitsma J. M., Sonké B., Taedoumg H., Tan S., White L., Wöll H., Lewis S. L. 2012. What controls tropical forest achitecture? Testing environmental, structural and floristic drivers. Global Ecology and Biogeography 21: 1179-1190.
  • Będkowski K. 2008. Fotogrametryczny pomiar wysokości drzew na obrazach z kamery cyfrowej DMC. Roczniki Geo-matyki 6: 41-48.
  • Będkowski K., Adamczyk J., Mikrut S. 2006. Współczesne metody fotogrametrii i ich zastosowanie w leśnictwie. Roczniki Geomatyki 4: 55-65.
  • Heurich M., Persson A., Holmgren J., Kennel E. 2004. Detecting and Measuring Individual Trees with Laser Scanning in Mixed Mountain Forest of Central Europe Using an Algorithm Developed for Swedish Boreal Forests Conditions. Proc. of the ISPRS working group VII/2 ‘Laser-Scanners for Forest and Landscape Assessment’, Freiburg, Germany. Int. Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences XXXVI (8/W2): 307-312.
  • Heurich M., Weinacker H. 2004. Automated tree detection and measurement in temperate forest of central Europe using laserscanning data. Proceedings of the ISPRS working group on Laser-Scanners for Forest and Landscape Assessment, Germany.
  • Hyyppä J., Hyyppä H., Litkey P., Yu X., Haggrén H., Rönnholm P., Pyysalo U., Pitkänen J., Maltamo M. 2004. Algorithms and methods of airborne laser-scanning for forest measurements. International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences 36: 82-89.
  • Hyyppä J., Inkinen M. 1999. Detecting and estimating attributes for single trees using laser scanner. The Photogrammetric Journal of Finland 16: 27-42.
  • Jung S., Kwak D., Park T., Lee W., Yo S. 2011. Estimating crown variables of individual trees using airborne and terrestrial laser scanners. Remote Sensing 3: 2346-2363.
  • King D. A., Clark D. A. 2011. Allometry of emergent tree species from saplings to above-canopy adults in a Costa Rican rain forest. Journal of Tropical Ecology 27: 573-579.
  • Kraus K., Pfeifer N. 2001. Advanced DTM generation from LiDAR data. International Archives Of Photogrammetry Remote Sensing And Spatial Information Sciences 34: 23-30.
  • Nćsset E. 1997. Determination of mean tree height of forest stands using airborne laser scanner data. ISPRS Journal of Photogrammetry and Remote Sensing 52 (2): 49-56.
  • Nćsset E. 2002. Determination of mean tree height of forest stands by digital photogrammetry. Scandinavian Journal of Forest Research 17 (5): 446-459.
  • Nilsson M. 1996. Estimation of tree heights and stand volume using an airborne lidar system. Remote Sensing of Environment 56 (1): 1-7.
  • Stereńczak K., Będkowski K., Weinacker H. 2008. Accuracy of crown segmentation and estimation of selected trees and forest stand parameters in order to resolution of used DSM and nDSM models generated from dense small footprint LiDAR data. Proceedings of Youth Forum 38: 27-33.
  • Stereńczak K., Kozak J. 2011. Evaluation of digital terrain models generated in forest conditions from airborne laser scanning data acquired in two seasons. Scandinavian Journal of Forest Research 26 (4): 374-384.
  • Wężyk P., Solecki K. 2008. Określanie wysokości drzewostanów nadleśnictwa Chojna w oparciu o lotniczy skaning laserowy (ALS). Archiwum Fotogrametrii, Kartografii i Teledetekcji 18: 663-672.
  • Wężyk P., Szostak M., Tompalski P. 2010. Aktualizacja baz danych SILP oraz leśnej mapy numerycznej w oparciu o dane z lotniczego skaningu laserowego. Archiwum Fotogrametrii, Kartografii i Teledetekcji 21: 437-446.
  • Wężyk P., Tompalski P., Szostak M., Glista M., Pierzchalski M. 2008. Describing the selected canopy layer parameters of the Scots pine stands using ALS data. SilviLaser: 636-645.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-3ec3565c-4cd5-4f46-bfc3-14e2865a2555
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.