PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2016 | 25 | 4 |

Tytuł artykułu

Analysis of probable flows based on the rainfall-runoff model for flood scenarios: a case study of the Losse river catchment (Germany)

Autorzy

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The procedure of the rainfall–runoff (R-R) model, based on the instantaneous unit hydrograph (IUH) method and used to calculate the probable flows in 8 profiles of the Losse river (on the stretch from 5+476 to 7+596 km) for three flood scenarios (Qextreme, Q1% and Q10%), has been presented in this work. A computer program developed by the author was used to conduct the analyses, enabling the flows to be simultaneously calculated for each of the analyzed profiles in response to 10 rainfall events of varying duration and a given exceedance probability. The obtained values of probable flows were recalculated into corresponding water table levels using the WSP-ASS program (Water Level Program). The extent of the flooding and water depths for three flood scenarios were calculated based on the levels of the water table and terrain elevation data ("Digital Terrain Model"). As a final effect of the analyses, flood hazard maps for the analyzed stretch of the Losse River were constructed, enabling the consequences of flooding to business activities, the infrastructure, the environment, and human health and life to be assessed.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

25

Numer

4

Opis fizyczny

p.1403-1413,fig.,ref.

Twórcy

autor
  • Department of Hydraulic Engineering, Warsaw University of Life Sciences - SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland

Bibliografia

  • 1. Directive 2007/60/EC of the European Parliament and Council of 23 October 2007 on the assessment and management of flood risk. Official Journal of the European Union No. L 288/27, 6.11.2007.
  • 2. Water Law of 5 January 2011. Journal of Laws No. 32, item 104, 2011 [In Polish].
  • 3. LABEL (EU Project on river Labe-Elbe). Available at: http://www.label-eu.eu. 2011.
  • 4. FLOOD WISE (Water Information System for Europe). Available at: http://flood-wise.eu. 2011.
  • 5. Regulation of the Minister of Environment, Minister of Transport, Construction and Maritime Economy, Minister of Administration and Digitalization, and Minister of Internal Affairs of 22 January, 2013 on developing flood hazard and flood risk maps. Journal of Laws 2013, item 104, 2013 [In Polish].
  • 6. KJELLGREN S. Exploring local risk managers` use of flood hazard maps for risk communication purposes in Baden-Württemberg. Nat. Hazards Earth Syst. Sci. 13, 1857, 2013.
  • 7. MÜLLER U. Implementation of the Flood Risk Management Directive in Selected European Countries. Int. J. Disaster Risk Sci. 4 (3), 115, 2013.
  • 8. LAWA (German Working Group on Water Issues of the Federal States and the Federal Government). Recommendations for the Establishment of Flood Hazard Maps and Flood Risk Maps. Dresden, 2010 [In German].
  • 9. LAWA (German Working Group on Water Issues of the Federal States and the Federal Government). Recommendations for the Establishment of Flood Risk Management Plans. Dresden, 2010 [In German].
  • 10. DYSARZ T., WICHER-DYSARZ J., SOJKA M. Assessment of the Impact of New Investments on Flood Hazard-Study Case: The Bridge on the Warta River near Wronki. Water 7, 5752, 2015.
  • 11. SARHADI A., SOLTANI S., MODARRES R. Probabilistic flood inundation mapping of ungauged rivers: Linking GIS techniques and frequency analysis. J. Hydrol. 458-459, 68, 2012.
  • 12. AGGETT G.R., WILSON J.P. Creating and coupling a highresolution DTM with a 1-D hydraulic model in a GIS for scenario-based assessment of avulsion hazard in a gravelbed river. Geomorphology 113 (1), 21, 2009.
  • 13. BEILICCI R., BEILICCI E. Advance hydraulic modeling using HEC-RAS, Baraolt River, Romania. Research Journal of Agricultural Science 46 (1), 19, 2014.
  • 14. ZHONG G.H., LIU S.G., HAN C., HUANG W. Urban flood mapping for Jiaxing City based on hydrodynamic modeling and GIS analysis. Journal of Coastal Research, Special Issue, 68, 168, 2014.
  • 15. REMO J.W.F, CARLSON M., PINTER N. Hydraulic and flood-loss modeling of levee, floodplain, and river management strategies, Middle Mississippi River, USA. Nat Hazard 61, 551, 2012.
  • 16. MOEL H., AERTS J.C.J.H., KOOMEN E. Development of flood exposure in the Netherlands during the 20th and 21st century. Global Environmental Change 21 (2011), 620, 2011.
  • 17. ALAGHMAND S., bin ABDULLAH R., ABUSTAN I., VOSOOGH B. GIS-based river flood hazard mapping in urban area (a case study in Kayu Ara River Basin, Malaysia). Int. J. Eng. Technol. 2 (6), 488, 2010.
  • 18. HE Y.P., XIE H., CUI P., WEI F.Q., ZHONG D.L., GARDNER J.S. GIS-based hazard mapping and zonation of debris flows in Xiaojiang Basin, southwestern China. Environ. Geol. 45(2), 286, 2003.
  • 19. FERNANDEZ D., LUTZ M. Urban flood hazard zoning in Tucumán Province, Argentina, using GIS and multicriteria decision analysis. Eng. Geol. 111(1-4), 90, 2010.
  • 20. BAJABAA S., MASOUD M., AL-AMRI N. Flash flood hazard mapping based on quantitative hydrology, geomorphology and GIS techniques (case study of Wadi Al Lith, Saudi Arabia). Arab. J. Geosci. 7, 2469, 2014.
  • 21. KLEMEŠOVÁ K., KOLÁŘ M., ANDRÁŠKO I. Using GIS in the flood management – flood maps (Troubky, Czech Republic). Geographia Technica 09(2), 44, 2014.
  • 22. NASH J.E. The form of the instantaneous unit hydrograph. IAHS 59, 202, 1957.
  • 23. REGIERUNGSPRÄSIDIUM KASSEL, UNIVERSITÄT KASSEL. Flood risk management plan for the catchment area of the Hessian Fulda (Summary). Kassel, 164, 2010 [In German].
  • 24. THEOBALD S., ROLAND F., KREIL A., MARBURGER M. Flood risk management planning for the catchment area of the Hessian Fulda. Korrespondenz Wasserwirtschaft 2011, 9 (4), 499, 2011 [In German].
  • 25. BARSZCZ M., THEOBALD S., RÖTZ A. Methodology of flood risk management plan for the Fulda river catchment area in Germany. Gospodarka Wodna 1, 12, 2013 [In Polish].
  • 26. BARSZCZ M. Evaluation of suitability of the conceptual Nash model for the simulation a flow hydrograph in a urbanized catchment considering rainfall depth scenarios. Sci. Rev. Eng. Env. Sci. 64, 113, 2014 [In Polish].
  • 27. CIEPIELOWSKI A., DĄBKOWSKI L.SZ. Methodology of calculating maximum flows in small river catchments (with examples). Publishing House of Projprzem-EKO, Bydgoszcz, 2006 [In Polish].
  • 28. BOGDANOWICZ E., STACHÝ J. Maximum rainfalls in Poland, design characteristics. Materiały badawcze IMGW 23, Hydrologia i Oceanologia 85, 1997 [In Polish].
  • 29. DVWK (German Association for Water, Wastewater and Waste). Instructions for use of rainfall-runoff models in small watersheds. Regeln 113, Verlag Paul Parey, Hamburg, Vol. II, 1984 [In German].
  • 30. BARSZCZ M. Normalized rainfall depth distributions during rainfalls in the area of experimental catchment in Warsaw. Woda-Środowisko-Obszary Wiejskie, Vol. 12, 3 (39), 27, 2012 [In Polish].
  • 31. SCS (Soil Conservation Service). National Engineering Handbook. Sec. 4, Hydrology, U.S. Department of Agriculture, Washington, D.C., 1985.
  • 32. LUTZ W. Calculation of flood flows using field characteristics. Institute of Hydrology and Water Managament. University of Karlsruhe (TH), 1984 [In German].
  • 33. USDA-SCS (U.S. Department of Agriculture, Soil Conservation Service). Engineering field manual. Chapter 2: Estimating runoff and peak discharges, 1989.
  • 34. IGNAR S. Methodology of calculating flood flows in unobserved catchment areas. Rozprawy Naukowe i Monografie, SGGW Publishing, Warszawa, 56, 1993 [In Polish].
  • 35. KOSTRA-DWD. German Weather Service Abt. Hydrometeorology, Rainfall amounts (Losse), 2005 [In German].
  • 36. WANIELISTA M., KERSTEN R., EAGLIN R. Hydrology, Water quantity and quality control. John Wiley & Sons, Inc, 1997.
  • 37. OKOŃSKI B. Modeling direct runoff depending on the state of the forest catchment cover. Seria Rozpr. Nauk. Publishing House of Agricultural Academy, Poznań, 374, 2006 [In Polish].
  • 38. BYCZKOWSKI A. Hydrology. SGGW Publishing, Warszawa, II, 333, 1996 [In Polish].
  • 39. MISHRA S.K., SINGH V.P. Soil Conservation Service Curve Number (SCS-CN) Methodology. Kluwer Academic Publishers, Dordrecht, 2003.
  • 40. KOTOWSKI A., KAŹMIERCZAK B., DANCEWICZ A. Modeling of rainfalls for the purpose of dimensioning sewage systems. Committee of Civil Engineering Sciences of Polish Academy of Sciences, 128, 2010 [In Polish].
  • 41. IMHOFF K., IMHOFF K.R. Construction of sewage in cities and wastewater treatment. Publishing House of Projprzem-EKO, Bydgoszcz, 1996 [In Polish].
  • 42. BŁASZCZYK W., ROMAN M., STAMATELLO H. Sewage system. Arkada Publishing, Warsaw, Vol. I, 1974 [In Polish].
  • 43. OKOŃSKI B., MILER A.T. Adapting the SCS-CN method for calculating effective rainfall in forest catchments. Monografie Komitetu Inżynierii Środowiska Polskiej Akademii Nauk I (68), 143, 2010 [In Polish].
  • 44. HLUG (Hessian Agency for Environment and Geology). Water gauge station - Helsa. Available at: http://www.hlug. de/static/pegel/static/stat_156869.htm?entryparakey=W. 2015.
  • 45. WIĘZIK B. Maximum annual flows of given exceedance probability in small uncontrolled catchments. Monografie Komitetu Inżynierii Środowiska Polskiej Akademii Nauk I (68), 153, 2010 [In Polish].
  • 46. SHP (Association of Polish Hydrologists). Methodology of calculating maximum flows and rainfalls of given exceedance probability for controlled as well as uncontrolled catchments, and identifying rainfall-runoff transformation models. Work commissioned by the National Water Management Authority, Warszawa, 2009 [In Polish].
  • 47. STACHÝ J., FAL B. The rules for calculating the maximum probable flows. Prace Inst. Bad. Dróg i Mostów, 3, 1984 [In Polish].
  • 48. HLUG (Hessian Agency for Environment and Geology). Available at: www.hlug.de/start/wasser/hochwasser.html. 2015.
  • 49. WŁODARCZYK A., KĘSY R. Methodologies of preparing flood hazard maps - main assumptions. Monografie Komitetu Inżynierii Środowiska Polskiej Akademii Nauk I, (68), 309, 2010 [In Polish].
  • 50. KZGW (National Water Management Authority). Methodology of Flood Hazard and Risk Maps Elaboration. KZGW, Warszawa, 2009 [In Polish]

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-3ec0993e-4ae6-4d15-9857-b5fcba1baebd
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.