PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2017 | 26 | 2 |

Tytuł artykułu

Carbon footprint assessment of sweet cherry production: hotspots and improvement options

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The carbon footprint (CF) evaluates the overall amount of greenhouse gas emissions and removals associated with a product or activity across its life cycle. Today, the CF assessment has the potential to be a key measurement for increasing sustainable agricultural production. In addition, the export-oriented fruit sector has been challenged to quantify and reduce their CF. Worldwide there are scant peer-review studies that examine the CF of stone fruits (Prunus genus). The scarcity is most evident in sweet cherries, which is the third most exported stone fruit in the world in terms of value (after almonds and peaches). Chile is the largest southern hemisphere producer and exporter of sweet cherry fruit. Within this context, the present study is one of the first assessments of the CF of conventional sweet cherry production. This work considers Chilean agricultural practices and identifies key influencing factors (hotspots). It takes into account the following agricultural inputs: mineral fertilizers, pesticides, diesel consumption for agricultural operations, machinery, and electricity for irrigation. The results indicate that the average CF of the Chilean sweet cherry production is 0.41 kg CO₂-eq/kg of harvested fruit, with a 95% confidence interval between 0.36 and 0.47 kg CO₂-eq/kg. This value is higher than those for other stone fruits reported by the literature. Diesel and fertilizers are the most important contributors to the CF of sweet cherry cultivation. Improvement scenarios are evaluated for the hotspots in order to reduce greenhouse gas emissions from the production of this fruit. This study provides quantitative environmental criteria associated with global warming concerns to the stakeholders in the fruit sector and to the agricultural policymakers.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

26

Numer

2

Opis fizyczny

P.559-566,fig.,ref.

Twórcy

autor
  • School of Industrial Civil Engineering, Faculty of Engineering, Universidad de Talca, Casilla 747, Talca, Chile
autor
  • School of Industrial Civil Engineering, Faculty of Engineering, Universidad de Talca, Casilla 747, Talca, Chile
autor
  • Forestry Department of Environmental Management, Faculty of Forest Science, Universidad de Talca, Casilla 747, Talca, Chile
autor
  • Department of Industrial Engineering, Faculty of Engineering, Universidad de Talca, Casilla 747, Talca, Chile
  • Chilean Food Processing Research Center (CEAP), R09I2001, Av. San Luis km 1, Talca, Chile

Bibliografia

  • 1. ISO (International Organization of Standardization). ISO 14040: 2006 Environmental management – life cycle assessment – principles and framework. Geneva, Switzerland, 2006.
  • 2. NÚÑEZ M., PFISTER S., ANTÓN A., MUÑOZ P., HELLWEG S., KOEHLER A., RIERADEVALL J. Assessing the environmental impact of water consumption by energy crops grown in Spain. J. Ind. Ecol. 17 (1), 90, 2013. http://dx.doi.org/10.1111/j.1530-9290.2011.00449.x
  • 3. VITOUSEK P.M., MOONEY H.A., LUBCHENCO J., MELILLO J.M. Human Domination of Earth’s Ecosystems. Science. 277 (5325), 494, 1997. http://dx.doi.org/10.1126/science.277.5325.494
  • 4. ALAPHILIPPE A., SIMON S., BRUN L., HAYER F., GAILLARD G. Life cycle analysis reveals higher agroecological benefits of organic and low-input apple production. Agron. Sustain. Dev. 33(3), 581, 2012, http://dx.doi.org/10.1007/s13593-012-0124-7
  • 5. CROSS P., EDWARDS-JONES G. Variation in pesticide hazard from arable crop production in Great Britain from 1992 to 2002: Pesticide risk indices and policy analysis. Crop Protect. 25(10), 1101, 2006. http://dx.doi.org/10.1016/j.cropro.2006.02.013
  • 6. MAMY L., GABRIELLE B., BARRIUSO E. Comparative environmental impacts of glyphosate and conventional herbicides when used with glyphosate-tolerant and nontolerant crops. Environ. Pollut. 158 (10), 3172, 2010. http://dx.doi.org/10.1016/j.envpol.2010.06.036
  • 7. GIRGENTI V., PEANO C., BOUNOUS M., BAUDINO C. A life cycle assessment of non-renewable energy use and greenhouse gas emissions associated with blueberry and raspberry production in northern Italy. Sci. Total. Environ. 458-460, 414, 2013. http://dx.doi.org/10.1016/j.scitotenv.2013.04.060
  • 8. EPLCA. Carbon footprint - What it is and how to measure it. European Platform on Life Cycle Assessment (EPLCA), Joint Research Centre - Institute for Environment and Sustainability. Ispra, Italy, 2007.
  • 9. BSI PAS 2050-1:2012. Assessment of life cycle greenhouse gas emissions from horticultural products. British Standards Institution (BSI), London, United Kingdom, 2012.
  • 10. BINA S., DOWLATABADIB H. Consumer lifestyle approach to US energy use and the related CO₂ emissions. Energ. Policy. 33,197, 2005. http://dx.doi.org/10.1016/S0301-4215(03)00210-6
  • 11. KRAMER K., MOLL H., NONHEBEL S., WILTING H. Greenhouse gas emissions related to Dutch food consumption. Energ. Policy. 27, 203, 1999. http://dx.doi.org/10.1016/S0301-4215(99)00014-2
  • 12. MILÀ I CANALS L., BURNIP G., COWELL S. Evaluation of the environmental impacts of apple production using Life Cycle Assessment (LCA): Case study in New Zealand. Agric. Ecosyst. Environ. 114, 226, 2006. http://dx.doi.org/10.1016/j.agee.2005.10.023
  • 13. LIU Y., LANGER V., HØGH-JENSEN H., EGELYNG H. Life cycle assessment of fossil energy use and greenhouse gas emissions in Chinese pear production. J. Clean. Prod. 18, 1423, 2010. http://dx.doi.org/10.1016/j.jclepro.2010.05.025
  • 14. PAGE G., KELLY T., MINOR M., CAMERON M. Modeling carbon footprints of organic orchard production systems to address carbon trading: An approach based on life cycle assessment. HortScience. 46, 324, 2011.
  • 15. SANJUAN N., UBEDA L., CLEMENTE G., MULET A. LCA of integrated orange production in the Comunidad Valenciana (Spain). Int. J. Agric. Resources Govern. Ecol. 4 (2), 163, 2005. http://dx.doi.org/10.1504/IJARGE.2005.007198
  • 16. CORDES H., IRIARTE A., VILLALOBOS P. Evaluating the carbon footprint of Chilean organic blueberry production. Int. J. Life Cycle Assess. 21, 281, 2016. http://dx.doi.org/10.1007/s11367-016-1034-8
  • 17. LITSKAS V., MAMOLOS A., KALBURTJI K., TSATSARELIS C., KIOSE-KAMPASAKALI E. Energy flow and greenhouse gas emissions in organic and conventional sweet cherry orchards located in or close to Natura 2000 sites. Biomass Bioenerg. 35 (3), 1302, 2011. http://dx.doi.org/10.1016/j.biombioe.2010.12.023
  • 18. FAOSTAT. Food and Agriculture Organization Corporate Statistical Database. Food and Agriculture Organization (FAO). 2016. http://faostat3.fao.org/download/Q/QC/E
  • 19. MUÑOZ M. Sweet cherry: fruits in expansion. Office of Agricultural Policies and studies (ODEPA). Ministry of Agriculture - Chile. Santiago, Chile, 2015 [In Spanish].
  • 20. ODEPA (OFFICE OF AGRICULTURAL POLICIES AND STUDIES). Insertion of the Chilean agriculture on the international markets. Ministry of Agriculture - Chile. Santiago, Chile, 2013 [In Spanish].
  • 21. FDF. Guide of good practices of sustainability in the fruit industry of Chile. Foundation for Fruit Development (FDF). Santiago, Chile, 2013 [In Spanish].
  • 22. ISO (INTERNATIONAL ORGANIZATION FOR STANDARDIZATION). ISO/TS 14067:2013. Greenhouse gases - Carbon footprint of products- Requirements and guidelines for quantification and communication. Geneva, Switzerland, 2013.
  • 23. CCaLC. Carbon Calculations over the Life Cycle of Industrial products. Carbon footprinting tool, 2016. http://www.ccalc.org.uk
  • 24. SWISS CENTRE FOR LCI. The Ecoinvent database. Swiss Centre for Life Cycle Inventories, 2016. http://www.ecoinvent.org/about-us/
  • 25. BSI (BRITISH STANDARDS INSTITUTION). PAS 2050:2011. Specification for the assessment of life cycle greenhouse gas emissions of goods and services. London, United Kingdom, 2011.
  • 26. BRAVO J. Sweet cherry: update of a market. Office of Agricultural Policies and Studies (ODEPA). Ministry of Agriculture - Chile. Santiago, Chile. 2013 [In Spanish].
  • 27. SNA (NATIONAL AGRICULTURAL SOCIETY). Technical data sheet of sweet cherry. Department of studies. SNA. Santiago, Chile, 2015 [In Spanish]. http://www.sna.cl/estudios/fichas-tecnicas/
  • 28. ODEPA (OFFICE OF AGRICULTURAL POLICIES AND STUDIES). Cost of production of sweet cherry in the Maule region. Ministry of Agriculture - Chile. Santiago, Chile, 2015 [In Spanish]. http://www.odepa.cl/costo-de-produccion-delcerezo/
  • 29. BESSOU C., BASSET-MENS C., TRAN T., BENOIST A. LCA applied to perennial cropping systems: A review focused on the farm stage. Int. J. Life Cycle Assess. 18, 340, 2013. http://dx.doi.org/10.1007%2Fs11367-012-0502-z
  • 30. OSSÉS DE EICKER M., HISCHIER R., HURNI H., ZAH R. Using non-local databases for the environmental assessment of industrial activities: the case of Latin America. Environ. Impact Assess. Rev. 30, 145, 2010. http://dx.doi.org/10.1016/j.eiar.2009.08.003
  • 31. FRISCHKNECHT R., JUNGBLUTH N., ALTHAUS H.J., DOKA G., HECK T., HELLWEG S., HISCHIER R., NEMECEK T., REBITZER G., SPIELMANN M., WERNET G. Overview and methodology. Ecoinvent report No. 1. Swiss Centre for Life Cycle Inventories, Dübendorf, 2007.
  • 32. GHG PROTOCOL. Quantitative Uncertainty Guidance. Product Life Cycle Accounting and Reporting Standard. The Greenhouse Gas Protocol, 2011. http://www. ghgprotocol.org /standards/ product-standard
  • 33. IPCC. IPCC guidelines for National Greenhouse Gas Inventories, Chapter 11: N₂O emissions from managed soils, and CO₂ emissions from line and urea application. Institute for Global Environmental Strategies. Hayama, Japan, 2006.
  • 34. AUDSLEY E., BRANDER M., CHATTERTON J., MURPHY-BOKERN D., WEBSTER C., WILLIAMS A. How low can we go? An assessment of greenhouse gas emissions from the UK food system and the scope to reduce them by 2050. FCRN-WWF-UK, 2009.
  • 35. IRIARTE A., ALMEIDA M.G., VILLALOBOS P. Carbon footprint of premium quality export bananas: Case study in Ecuador, the world‘s largest exporter. Sci. Total. Environ. 472, 1082, 2014. http://dx.doi.org/10.1016/j.scitotenv.2013.11.072
  • 36. BRITO DE FIGUEIRÊDO M.C., KROEZE C., POTTING J. The carbon footprint of exported Brazilian yellow melon. J. Clean. Prod. 47, 404, 2012. http://dx.doi.org/ 10.1016/j.jclepro.2012.09.015
  • 37. GASOL C., GABARRELL X., ANTON A., RIGOLA M., CARRASCO J., CIRIA P. Life cycle assessment of a Brassica carinata bioenergy cropping system in southern Europe. Biomass Bioenerg. 31 (8), 543, 2007. http://dx.doi.org/10.1016/j.biombioe.2007.01.02
  • 38. HRAMIS J. Administrative Systems and Procedures: Methodology for Application in Private and Public Institutions. Universidad Iberoamericana, México, D.F., 1994 [In Spanish].
  • 39. KENDALL A., MARVINNEY E., BRODT S., ZHU W. Life Cycle-based Assessment of energy use and greenhouse gas emissions in almond production, Part I: Analytical framework and baseline results. J. Ind. Ecol. 19, 1008, 2015. http://dx.doi.org/10.1111/jiec.12332
  • 40. MICHOS M., MAMOLOS A., MENEXES G., TSATSARELIS C., TSIRAKOGLOU V., KALBURTJI K. Energy inputs, outputs and greenhouse gas emissions in organic, integrated and conventional peach orchards. Ecol. Indic. 13 (1), 22, 2012. http://dx.doi.org/10.1016/j.ecolind.2011.05.002
  • 41. INGRAO C., MATARAZZO A., TRICASE C., CLASADONTE M.T., HUISINGH D. Life cycle assessment for highlighting environmental hotspots in Sicilian peach production systems. J. Clean. Prod. 92, 109, 2015. http://dx.doi.org/10.1016/j.jclepro.2014.12.053
  • 42. YAN M., CHENG K., YUE Q., YAN Y., REES R., PAN G. Farm and product carbon footprint of China´s fruit production - life cycle inventory of representative orchards of five major fruits. Environ. Sci. Pollut. Res. 23, 4681, 2016. http://dx.doi.org/10.1007/s11356-015-5670-5

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-3e9572ed-ca4e-4e4b-b44e-e51b1a4d27a6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.