PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2019 | 28 | 2 |
Tytuł artykułu

Effects of using anode biofilm and cathode biofilm bacteria as inoculum on the start-up, electricity generation, and microbial community of air-cathode single-chamber microbial fuel cells

Autorzy
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Inoculum is critical for the start-up and performance of microbial fuel cells (MFCs). The effluent of mature MFCs is usually used as inoculum for the start-up of immature MFCs. However, the effluent of mature MFCs contains bacteria both from anode biofilm (ASB) and cathode biofilm (CSB). Here, ASB and CSB and their mixtures were used as inoculum in the start-up of MFCs in order to gain more insight into the influence of CSB on the start-up of MFCs. Compared to anode inoculum-enriched MFCs, using cathode inoculum reduced start-up time from 5 d to 3 d. The time needed for scavenging oxygen was reduced from 900 min to 600 min, maximum power density was 19% lower (691 mW/m² vs 823 mW/m²), and the charge transfer resistance increased from 29.0 Ω to 48.3 Ω. The decreased start-up time and power generation of cathode inoculum-enriched MFCs was attributed to the increasing abundance of Azospirillum (80.02% vs. 12.68%) and the decreasing abundance of Geobacter (9.08% vs. 61.25%). This research suggested that CSB in the effluent of mature MFCs, when used as inoculum, has a side-effect on the start-up of MFCs.
Słowa kluczowe
Wydawca
-
Rocznik
Tom
28
Numer
2
Opis fizyczny
p.693-700,fig.,ref.
Twórcy
autor
  • State Key Laboratory of Clean Energy, Department of Energy Engineering, Zhejiang University, Hangzhou, P.R. China
autor
  • State Key Laboratory of Clean Energy, Department of Energy Engineering, Zhejiang University, Hangzhou, P.R. China
Bibliografia
  • 1. FAN L., XU D., LI C., XUE S. Molasses wastewater treatment by microbial Fuel Cell with MnO2-Modified cathode. Pol. J. Environ. Stud. 25 (6), 2359, 2016.
  • 2. HAI T., WEN-CHENG P., CHANG-FENG C., JIAN-PING X., WEN-JUN H. Remediation of acid mine drainage based on a novel coupled Membrane-Free microbial fuel cell with permeable reactive barrier system. Pol. J. Environ. Stud. 25 (1), 107, 2016.
  • 3. LOVLEY D.R., GIOVANNONI S.J., WHITE D.C., CHAMPINE J.E., PHILLIPS E.J., GORBY Y.A., GOODWIN S. Geobacter metallireducens gen. Nov. Sp. Nov., A microorganism capable of coupling the complete oxidation of organic compounds to the reduction of iron and other metals. Arch. Microbiol. 159 (4), 336, 1993.
  • 4. CARMONA-MARTINEZ A.A., HARNISCH F., FITZGERALD L.A., BIFFINGER J.C., RINGEISEN B.R., SCHRÖDER U. Cyclic voltammetric analysis of the electron transfer of Shewanella oneidensis MR-1 and nanofilament and. Bioelectrochemistry. 81, 74, 2011.
  • 5. RABAEY K., BOON N., HOFTE M., VERSTRAETE W. Microbial phenazine production enhances electron transfer in biofuel cells. Environ. Sci. Technol. 39 (9), 3401, 2005.
  • 6. AHMED S., ROZAIK E., ABDELHALIM H. Performance of Single-Chamber microbial fuel cells using different Carbohydrate-Rich wastewaters and different inocula. Pol. J. Environ. Stud. 25 (2), 503, 2016.
  • 7. SHENGKE Y., YANHUA W., YANG Z., HUIHUI L., WENKE W. Using Graphene/Polyaniline-Modified electrodes enhance the performance of Two-Chambered microbial fuel cells. Pol. J. Environ. Stud. 26 (3), 1233, 2017.
  • 8. YATES M.D., KIELY P.D., CALL D.F., RISMANI-YAZDI H., BIBBY K., PECCIA J., REGAN J.M., LOGAN B.E. Convergent development of anodic bacterial communities in microbial fuel cells. ISME J. 6, 2002, 2012.
  • 9. LIU W., WANG A., SUN D., REN N., ZHANG Y., ZHOU J. Characterization of microbial communities during anode biofilm reformation in a two-chambered microbial electrolysis cell (MEC). J. Biotechnol. 157 (4), 628, 2012.
  • 10. NIESSEN J., HARNISCH F., ROSENBAUM M., SCHRODER U., SCHOLZ F. Heat treated soil as convenient and versatile source of bacterial communities for microbial electricity generation. Electrochem. Commun. 8, 869, 2006.
  • 11. PAROT S., DELIA M.L., BERGEL A. Acetate to enhance electrochemical activity of biofilms from garden compost. Electrochim. Acta. 53, 2737, 2008.
  • 12. PHUNG N.T., LEE J., KANG K.H., CHANG I.S., GADD G.M., KIM B.H. Analysis of microbial diversity in oligotrophic microbial fuel cells using 16S rDNA sequences. FEMS Microbiol. Lett. 1, 77, 2004.
  • 13. LIU W., CHENG S., SUN D., HUANG H., CHEN J., CEN K. Inhibition of microbial growth on air cathodes of single chamber microbial fuel cells by incorporating enrofloxacin into the catalyst layer. Biosens. Bioelectron. 72, 44, 2015.
  • 14. XIE S., LIANG P., CHEN Y., XIA X., HUANG X. Simultaneous carbon and nitrogen removal using an oxic/anoxic-biocathode microbial fuel cells coupled system. Bioresour. Technol. 102 (1), 348, 2011.
  • 15. DAGHIO M., GANDOLFI I., BESTETTI G., FRANZETTI A., GUERRINI E., CRISTIANI P. Anodic and cathodic microbial communities in single chamber microbial fuel cells. New Biotechnol. 32 (1), 79, 2015.
  • 16. LIU W., CHENG S., GUO J. Anode modification with formic acid: A simple and effective method to improve the power generation of microbial fuel cells. Appl. Surf. Sci. 320, 281, 2014.
  • 17. CHENG S., WU J. Air-cathode preparation with activated carbon as catalyst, PTFE as binder and nickel foam as current collector for microbial fuel cells. Bioelectrochemistry. 92, 22, 2013.
  • 18. LOVLEY D.R., PHILLIPS E.J.P. Novel mode of microbial energy metabolism: Organic carbon oxidation coupled to dissimilatory reduction of iron or manganese. Appl. Environ. Microb. 54 (6), 1472, 1988.
  • 19. SUN D., CHENG S., WANG A., LI F., LOGAN B.E., CEN K. Temporal-Spatial changes in viabilities and electrochemical properties of anode biofilms. Environ. Sci.
  • 20. YANG J., CHENG S., SUN Y., LI C. Improving the power generation of microbial fuel cells by modifying the anode with single-wall carbon nanohorns. Biotechnol. Lett. 39 (10), 1515, 2017.
  • 21. SU X.L., TIAN Q., ZHANG J., YUAN X.Z., SHI X.S., GUO R.B., QIU Y.L. Acetobacteroides hydrogenigenes gen. Nov., Sp. Nov., An anaerobic hydrogen-producing bacterium in the family Rikenellaceae isolated from a reed swamp. Int. J. Syst. Evol. Micr. 64, 2986, 2014.
  • 22. LANGILLE M.G., MEEHAN C.J., KOENIG J.E., DHANANI A.S., ROSE R.A., HOWLETT S.E., BEIKO R.G. Microbial shifts in the aging mouse gut. Microbiome. 2 (1), 50, 2014.
  • 23. KIM J., JUNG S., REGAN J., LOGAN B. Electricity generation and microbial community analysis of alcohol powered microbial fuel cells. Bioresource Technol. 98 (13), 2568, 2007.
  • 24. MEI X., GUO C., LIU B., TANG Y., XING D. Shaping of bacterial community structure in microbial fuel cells by different inocula. Rsc Adv. 5, 78136, 2015.
  • 25. XING D., CHENG S., LOGAN B.E., REGAN J.M. Isolation of the exoelectrogenic denitrifying bacterium Comamonas denitrificans based on dilution to extinction. Appl. Microbiol. Biot. 85 (5), 1575, 2010.
  • 26. SCHOLTEN E., LUKOW T., AULING G., KROPPENSTEDT R.M., RAINEY F.A., DIEKMANN H. Thauera mechernichensis sp. Nov., An aerobic denitrifier from a leachate treatment plant. Int. J. Syst. Bacteriol. 49, 1045, 1999.
  • 27. SUN J., LI Y., HU Y., HOU B., ZHANG Y., LI S. Understanding the degradation of Congo red and bacterial diversity in an air-cathode microbial fuel cell being evaluated for simultaneous azo dye removal from wastewater and bioelectricity generation. Appl. Microbiol. Biot. 97 (8), 3711, 2013.
  • 28. ZHOU S., HAN L., WANG Y., YANG G., ZHUANG L., HU P. Azospirillum humicireducens sp. Nov., A nitrogen-fixing bacterium isolated from a microbial fuel cell. Int. J. Syst. Evol. Micr. 63, 2618, 2013.
  • 29. MA J., WANG Z., ZHANG J., WAITE T.D., WU Z. Cost-effective Chlorella biomass production from dilute wastewater using a novel photosynthetic microbial fuel cell (PMFC). Water Res. 108, 356, 2017.
  • 30. ZHANG X., CHENG S., WANG X., HUANG X., LOGAN B.E. Separator characteristics for increasing performance of microbial fuel cells. Environ. Sci. Technol. 43 (21), 8456, 2009.
  • 31. BOND D.R., LOVLEY D.R. Electricity Production by Geobacter sulfurreducens Attached to Electrodes. Appl. Environ. Microb. 69, 1548, 2003.
  • 32. TORRES C.I., KRAJMALNIK-BROWN R., PARAMESWARAN P., MARCUS A.K., WANGER G., GORBY Y.A., RITTMANN B.E. Selecting Anode-Respiring bacteria based on anode potential: Phylogenetic, electrochemical, and microscopic characterization. Environ. Sci. Technol. 43 (24), 9519, 2009.
  • 33. SHEHAB N., LI D., AMY G.L., LOGAN B.E., SAIKALY P.E. Characterization of bacterial and archaeal communities in air-cathode microbial fuel cells, open circuit and sealed-off reactors. Appl. Microbiol. Biot. 97 (22), 9885, 2013.
  • 34. KIM G.T., WEBSTER G., WIMPENNY J.W., KIM B.H., KIM H.J., WEIGHTMAN A.J. Bacterial community structure, compartmentalization and activity in a microbial fuel cell. J. Appl. Microbiol. 101 (3), 698, 2006.
  • 35. HOLLOW N.R., BUSTARD M., WILKINSON D., WILLOUGHBY N. A bacterium in the genus Dechloromonas can reduce chromate(VI) and transfer electrons directly to the anode in a microbial fuel cell from a waste alcohol. J. Biotechnol. 131 (2), S237, 2007.
  • 36. JANGIR Y., FRENCH S., MOMPER L.M., MOSER D.P., AMEND J.P., EL-NAGGAR M.Y. Isolation and characterization of electrochemically active subsurface delftia and azonexus species. Front. Microbiol. 7, 2016.
  • 37. WONG P.Y., CHENG K.Y., KAKSONEN A.H., SUTTON D.C., GINIGE M.P. Enrichment of anodophilic nitrogen fixing bacteria in a bioelectrochemical system. Water Res. 64, 73, 2014.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-3e438e24-147d-4cc5-8f92-84c434847026
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.