PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Czasopismo

2016 | 62 | 1 |

Tytuł artykułu

Estimation of the cardinal temperatures for germination of four Satureja species growing in Iran

Treść / Zawartość

Warianty tytułu

PL
Ocena temperatur głownych kiełkowania czterech gatunków cząbru rosnących w Iranie

Języki publikacji

EN

Abstrakty

EN
Introduction: Seed germination is a complex physiological process regulated by genetic and environmental factors including temperature, water, oxygen, light and pH. Among them, temperature is one of the most important factors controlling the maximum rate and percentage of diaspore germination. Objective: The aim of the study was to determine the cardinal temperatures (Tb, To, Tc) of four Satureja species growing in Iran. Methods: Seeds of Satureja mutica Fish. et C. A. Mey., S. macrantha C. A. Mey., S. sahandica Bornm and S. bachtiarica Bunge were germinated at nine constant temperatures (from 0 to 40°C) with 5°C intervals. A factorial experiment based on completely randomized design with four replications was applied to determine the cardinal temperatures estimated by three regression models including intersected-lines (ISL), quadratic polynomial (QPN) and five-parameters beta (FPB). Results: The highest germination percentage (GP) occurred at 20°C for S. mutica (86%), S. macrantha (55%), S. sahandica (81%) and S. bachtiarica (89%), but there was no significant difference between 20 and 25oC, except S. sahandica. Germination stopped at 0°C and 40°C. The highest germination rate (GR), the lowest mean germination time (MGT) and time to 50% germination (D50) were obtained at 20–25°C for all species. The GRm for S. bachtiarica was significantly (p≤0.05) higher than for three other species in all temperatures. None of the species did reach to 50% germination at temperatures higher than 30°C. Conclusion: Obtained results revealed the superiority of S. bachtiarica over the other species, v.s. S. macrantha was inferior. FPB and ISL models were most reliable for predicting cardinal temperatures, because of higher R2 value and the lower root mean square error (RMSE). S. macrantha and S. mutica showed the lowest and the highest cardinal temperatures, respectively, in all three models.
PL
Wstęp: Kiełkowanie nasion jest złożonym procesem fizjologicznym regulowanym przez czynniki genetyczne i środowiskowe, w tym temperaturę, wodę, tlen, światło i pH. Wśród nich, temperatura jest jednym z najważniejszych czynników wpływających na maksymalną szybkość i procent kiełkowania diaspor. Cel: W niniejszej pracy określono temperatury główne (Tb, To, Tc) kiełkowania nasion dla czterech gatunków cząbru występujących w Iranie. Metody: Nasiona Satureja mutica Fish. et C. A. Mey., S. macrantha C. A. Mey., S. sahandica Bornm i S. bachtiarica Bunge inkubowano w dziewięciu stałych temperaturach (od 0 do 40°C), w przedziałach co 5°C. Wykonano doświadczenie czynnikowe w układzie całkowicie losowym z czterema powtórzeniami, a dla określenia temperatur głównych zastosowano trzy modele regresji: segmentową regresję liniową (ISL), wielomianu kwadratowego (QPN) oraz regresję pięcioparametrową (FPB). Wyniki: Najwyższy procent kiełkowania (GP)odnotowano w temperaturze 20°C, odpowiednio: u S. mutica (86%), S. macrantha (55%), S. sahandica (81%) i S. bachtiarica (89%). Z wyjątkiem S. sahandica, nie stwierdzono jednak istotnej różnicy między 20 a 25°C. Kiełkowanie ustało w 0°C i w 40°C. Najwyższa zdolność kiełkowania (GR), najkrótszy średni czas kiełkowania (MGT) oraz czas kiełkowania 50% nasion (D50) obserwowano przy 20–25°C u wszystkich gatunków. Zdolność kiełkowania diaspor S. bachtiarica była istotnie (p≤0.05) wyższa niż u trzech pozostałych gatunków we wszystkich analizowanych temperaturach. Żaden z gatunków nie osiągnął 50% kiełkowania w temperaturach wyższych niż 30°C. Wnioski: Uzyskane wyniki pokazały przewagę S. bachtiarica nad innymi gatunkami, a S. macrantha charakteryzowała się najniższymi parametrami opisującymi kiełkowanie. Modele FPB i ISL najdokładniej przewidywały poziom temperatur głównych, ze względu na wyższą wartość współczynnika determinacji R2 i niższą wartość średniej kwadratowej błędów (RMSE). We wszystkich trzech modelach najniższe i najwyższe temperatury główne (Tb, To, Tc) zanotowano odpowiednio u S. macrantha i S. mutica.

Słowa kluczowe

Wydawca

-

Czasopismo

Rocznik

Tom

62

Numer

1

Opis fizyczny

p.7-21,fig.,ref.

Twórcy

autor
  • Department of Agronomy, Ferdowsi University, Mashhad, Iran
  • Khorasan-e-Razavi Agricultural and Natural Resources Research Center Mashhad, Iran
autor
  • Department of Agronomy, Ferdowsi University, Mashhad, Iran
autor
  • Department of Agronomy, Ferdowsi University, Mashhad, Iran
  • Biotechnology Research Department, Rangeland and Forestry Research Institute, Iran

Bibliografia

  • 1. Bezić N, Šamanić I, Dunkić V, Besendorfer V, Puizina J. Essential oil composition and internal transcribed spacer (ITS) sequence variability of four South-Croatian Satureja species (Lamiaceae). Molecules 2009; 14:925-38.
  • 2. Niemeyer HM. Composition of essential oils from Satureja darwinii (Benth.) Briq. and S. muitifiora (R. et P.) Briq. (Lamiaceae). Relationship between chemotype and oil yield in Satureja spp. J Essent Oil Res 2010; 22:477-82.
  • 3. Rechinger KH. Satureja in Flora of Iranica. Akademische Druck Verlagsantalt Graz. 1982:495-504.
  • 4. Kameli M, Hesamzadeh Hejazi SM, Ebadi M. Assessment of genetic diversity on populations of three Satureja species in Iran using ISSR markers. Ann Biol Res 2013; 4(3):64-72.
  • 5. Bedoya LM, Sanchez-Palomino S, Abad MJ, Bermejo P, Alcami J. Anti-HIV activity of medicinal plant extracts. J Ethnopharmacol 2001; 77(1):113-16.
  • 6. Radonic A, Milos M. Chemical composition and in vitro evaluation of antioxidant effect of free volatile compounds from Satureja montana L. Free Radic Res 2003; 37(6):673-9.
  • 7. Gohari AR, Hadjiakhoondi A, Sadat-Ebrahimi SE, Saeidnia S, Shafiee A. Cytotoxic terpenoids from Satureja macrantha C. A. Mey. Daru 2005; 13(4):177-81.
  • 8. Gohari AR, Saeidnia S, Hadjiakhoondi A, Abdoullahi M, Nezafati M. Isolation and quantificative analysis of oleanolic acid from Satureja mutica Fisch. & C. A. Mey. JMP 2009; 8(5):65-69.
  • 9. Hosainzadegan H, Delfan B. Evaluation of antibiofilm activity of dentol. Acta Med Iranica 2009; 47(1):35-40.
  • 10. Abad MJ, Bermejo P, Gonzales E, Iglesias I, Irurzun A, Carrasco L. Antiviral activity of Bolivian plant extracts. Gen Pharmacol 1999; 32(4):499-503.
  • 11. Amanlou M, Dadkhah F, Salehnia A, Farsam H, Dehpour AR. An anti-inflammatory and anti-nociceptive effects of hydroalcoholic extract of Satureja khuzistanica Jamzad. J Pharm Pharm Sci. 2005; 8(1):102-6.
  • 12. Azaz D, Demirci F, Satil F, Kurkcuoglu M, Baser KH. Antimicrobial activity of some Satureja essential oils. Z Naturforsch 2002; 57(9-10):817-21.
  • 13. Sokovic M, Tzakou O, Pitarokili D, Couladis M. Antifungal activities of selected aromatic plants growing wild in Greece. Nahrung 2002; 46:317-20.
  • 14. Hajhashemi V, Ghannadi A, Pezeshkian SK. Antinociceptive and anti-inflammatory effects of Satureja hortensis L. extracts and essential oil. J Ethnopharmacol 2002; 82:83-87.
  • 15. Sahin F, Karaman I, Gulluce M, Oguteu H, Sengul M, Adıguzel A et al. Evaluation of antimicrobial activities of Satureja hortensis L. J Ethnopharmacol 2003; 87:61-65.
  • 16. Sefidkon F, Jamzad Z. Chemical composition of the essential oil of three Iranian Satureja species (S. mutica, S. macrantha, and S. intermedia). Food Chem 2005; 91(1):1-4.
  • 17. Sefidkon F, Askari F, Sadeghzadeh L, Owlia P. Antimicrobial effects of the essential oils of Satureja mutica, S. edmondi and S. bachtiarica against Salmonella paratifi A and B. J Biol Iran 2010; 2:249-58.
  • 18. Fenner M, Thompson K. The Ecology of Seeds. Cambridge University Press, 2005.
  • 19. Baskin CC, Baskin JM. Seeds: ecology, biogeography, and evolution of dormancy and germination. San Diego, Academic Press 2001:666 pp.
  • 20. Nadjafi F, Tabrizi L, Shabahang J, Mahdavi Damghani AM. Cardinal germination temperatures of some medicinal plant species. Seed Technol 2009; 31(2):156-63.
  • 21. Kazerooni Monfared E, Rezvani Moghaddam P, Nassiri Mahallati M. Modeling the effects of water stress and temperature on germination of Lactuca serriola L. seeds. Intl Res J Appl Basic Sci 2012; 3(9):1957-65.
  • 22. Phartyal SS, Thapliyal RC, Nayal JS, Rawat MMS, Goshi G. The influences of temperatures on seed germination rate in Himalayan elm (Ulmus wallichiana). Seed Sci Technol 2003; 31:83-93.
  • 23. Verma SK, Kumar B, Ram G, Singh HP, Lal RK. Varietal effect on germination parameter at controlled and uncontrolled temperatures in Palmarosa (Cymbopogon martinii). Ind Crop Prod 2010; 32:696-9.
  • 24. Kader MA, Jutzi SC. Effects of thermal and salt treatments during imbibitions on germination and seedling growth of sorghum at 42/19°C. J Agron Crop Sci 2004; 190:35-38.
  • 25. Biligetu B, Schellenberg MP, McLeod JG. The effect of temperature and water potential on seed germination of poly-cross side-oats grama (Bouteloua curtipendula (Michx.) Torr.) population of Canadian prairie. Seed Sci Technol 2011; 39:74-81.
  • 26. Cave RL, Birch CJ, Hammer GL, Erwin JE, Johnston ME. Cardinal temperatures and thermal time for seed germination of Brunonia australis (Goodeniaceae) and Calandrinia sp. (Portulacaceae). Hortscience 2011; 46(5):753-58.
  • 27. Jay JPA. Modelling the germination of Buddleia davidii under constant conditions with the hydrothermal time concept. A Thesis submitted in partial fulfillment for the degree of master of science in forestry science. New Zealand. University of Canterbury, 2006.
  • 28. Heidari Z, Kamkar B, Sinaky JM. Determination of cardinal temperatures of milk thistle (Silybum marianum L.) Germination. Adv Plants Agric Res 2014; 1(5):28.
  • 29. Boroumand RZ, Koocheki A. Evaluation of cardinal temperature for three species of medicinal plants, ajowan (Trachyspermum ammi), fennel (Foeniculum vulgare) and dill (Anethum graveolens)]. Biaban (Desert Journal) 2006; 11(2):11-16.
  • 30. Jame YW, Cutforth HW. Simulating the effects of temperature and seeding depth on germination and emergence of spring wheat. Agric For Meteorol 2004; 124:207-18.
  • 31. Hardegree S. Predicting germination response to temperature. I. Cardinal temperature models and subpopulation-specific regression. Ann Botany 2006; 97:1115-25.
  • 32. Adam NR, Dierig DA, Coffelt TA, Wintermeyer MJ, Mackeya BE, Wall GW. Cardinal temperatures for germination and early growth of two Lesquerella species. Ind Crop Prod 2007; 25:24-33.
  • 33. Maguire JD. Speed of germination-aid in selection and evaluation for seedling emergence and vigor. Crop Sci 1962; 2:176-7.
  • 34. Tabrizi L, Koocheki A, Nassiri Mahallati M, Rezvani Moghaddam P. Germination behavior of cultivated and natural stand seeds of Khorasan thyme (Thymus transcaspicus Klokov) with application of regression models. Iran J Field Crop Res 2007; 5(2):249-57.
  • 35. Dashti M, Kafi M, Tavakkoli H, Mirza M. Cardinal temperatures for germination of Salvia leriifolia Benth. Herba Pol 2015; 60(1):5-18.
  • 36. Dumur D, Pilbeam CJ, Craigon J. Use of the Weibul function to calculate cardinal temperatures in Faba bean. J Exp Bot 1990; 41:1423-30.
  • 37. Covell S, Ellis RH, Roberts EH, Summerfield RJ. The influence of temperature on seed germination rate in grain legumes. J Exp Bot 1986; 37:705-15.
  • 38. Matthews S, Khajeh-Hosseini M. Mean germination time as an indicator of emergence performance in soil of seed lots of maize (Zea mays). Seed Sci Technol 2006; 34:339-47.
  • 39. Systat software Inc, Jandel Scientific Software, Version 1.1, 1994. California.
  • 40. Roman ES, Murphy SD, Swanton CJ. Simulation of Chenopodium album seedling emergence. Weed Sci 2000; 48:217-224.
  • 41. SAS Institute Inc. SAS user’s guide: Statistics, Version 7.1.3 ed. Cary, NC. 2007.
  • 42. Serry A, Ghamari-Zare A, Shahrzaad S, Naderi Shahab MA, Kalate-Jary S. Effect of physio-chemical treatments on seed germination of Salvia leriifolia Benth. Iranian J Med Aromat Plants 2012; 27(4):659- 67.
  • 43. Khalili N, Kamkar B, Khodabakhshi AH. Quantifying and analysis of germination responses of annual savory (Satureja hortensis L.) to temperature and salinity stress. Environ Stress Crop Sci 2015, 8(1):83-92.
  • 44. Jami Al-Ahmadi M, Kafi M. Cardinal temperatures for germination of Kochia scoparia L. J Arid Environ 2007; 68:308–14
  • 45. Khajeh-Hosseini M, Lomholt A, Matthews S. Mean germination time in the laboratory estimates the relative vigor and field performance of commercial lots of maize. Seed Sci Technol 2009; 37:446-61.
  • 46. Kamkar BGS. A pocket software to calculate germination and emergence indices. GUASNR 2011.
  • 47. Brodford KJ. Applications of hydrothermal time to quantifying and modeling seed germination and dormancy. Weed Sci 2002, 50:248-260.
  • 48. Piper EL, Boote KJ, Jones JW, Grimm SS. Comparison of two phenology models for predicting flowering and maturity date of soybean. Crop Sci 1996, 36:1606-1614.
  • 49. Windauer L, Altuna A, Benech-Arnold R. Hydrotime analysis of Lesquerella fendleri seed germination responses to priming treatments. Industrial Crops Prod 2007; 25:70-74.
  • 50. Demir I, Ermis S, Mavi K, Matthews S. Mean germination time of pepper seed lots (Capsicum annuum L.) predicts size and uniformity of seedlings in germination tests and transplant modules. Seed Sci Technol 2008; 36:21-30.
  • 51. Khodabakhshi AH, Kamkar B, Khalili N. Using nonlinear regression models to quantify germination response of annual savory (Satureja hortensis L.) to temperature and water potential. Agric Crop Management 2015; 17(1):229-240.
  • 52. Copeland LO, McDonald MB. Principles of Seed Science and Technology. Chapman and Hall, 1995.
  • 53. Tabrizi L, Nassiri Mahallati M, Koocheki A. Investigations on the cardinal temperatures for germination of Plantago ovata and Plantago psyllium. J Iranian Field Crop Res 2004; 2(2):143-50.
  • 54. Bannayan M, Nadjafi F, Rastgoo M, Tabrizi L. Germination properties of some wild medicinal plants from Iran. Seed Sci Technol 2006; 28:80-86.
  • 55. Salimi H, Gorbanli M. Investigation oat seed germination in different conditions and effect of some operative factors on seed dormancy breaking. Rostaniha 2001; 2:41-55.
  • 56. Scott SJ, Jones RA, Williams WA. Review of data analysis methods for seed germination. Crop Sci 1984; 24:1192-1199.
  • 57. El-Kassaby YA, Moss I, Kolotelo D, Stoehr M. Seed germination: mathematical representation and parameters extraction. Forest Sci 2008; 54(2):220-227.
  • 58. Brown R, Mayer DG. Representing cumulative germination. 2. The use of the weibull function and other empirically derived curves. Ann Botany 1998; 61(2):127-138.
  • 59. Soltani A, Robertson M, Torabi B, Yousefi-Daz M, Sarparast R. Modeling seedling emergence in chickpea as influenced by temperature and sowing depth. Agr Forest Meteorol 2006; 138:156-167.
  • 60. Oliveira AKM, Ribeiro JWF, Pereira KCL, Silva CAA. Effects of temperature on the germination of Diptychandra aurantiaca (Fabaceae) seeds. Acta Sci Agron 2013; 35(2):203-208.
  • 61. Evers GW. Germination response of subterranean, berseem and rose clovers to alternating temperatures. Agron J 1991; 83:1000-1004.
  • 62. Parmoon G, Moosavi SA, Akbari H, Ebadi A. Quantifying cardinal temperatures and thermal time required for germination of Silybum marianum seed. Crop J 2015; 3:145-151.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-3e3525ce-fb45-4f0c-9910-542f57e7edfb
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.