PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2019 | 34 | 3 |

Tytuł artykułu

Effect of the external electric field on the structure and reactivity of deoxyribonucleic acids

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The study of the effects of static external electric fields (EEF) on the structure of several biologically important compounds has been now extended to the structure of deoxyribonucleic acids and interactions via intermolecular hydrogen bonds in the thymine-adenine and cytosine-guanine pairs. The present study involves computations of changes in energy, and dipole moments, charge density and bond lengths of fragments of deoxyribonucleic acid in response to applied external electric fields of 0.00, 5.14, 25.70 and 51.40 ∙ 106 MV cm-1. The computations were performed with the help of a commercial package (HyperChem 8.0) software together with the PM3 method for optimization of the conformation of the molecules. The raise in the EEF strength to 5.14 ∙ 106 MV cm-1 has a subtle effect on the molecular energy of the systems. On elevating the strength up to 25.70 ∙ 106 MV cm-1 that decrease in molecular energy was more significant. EEF has a tremendous effect on their reorientation in the Cartesian system, geometry of deoxyribonucleic acid and the ability of particular bases within it to form intermolecular hydrogen bonds. Observed changes evoked by the EEF were specific for particular molecules. They resulted mainly from the polarization of the bonds and from steric deformations of the molecules. Based on the energy criterion, regardless of the EEF strength applied, the ACGT(adeniane-cytosine-guanine-thymine) fragment with T1, C2, G2 and A1 tautomers is more stable than that fragment bearing T1, C1, G1 and A1 tautomers. The EEF of the strength up to 51.40 ∙ 106 MV cm-1 breaks neither T-A nor C-Gintermolecular bonds but only influence their lengths. EEF, independent of its strength, only slightly influenced the charge density of the phosphoryl group of phosphorylated deoxyribose. A possible splitting of the bonds in that group was only slightly facilitated

Słowa kluczowe

Wydawca

-

Rocznik

Tom

34

Numer

3

Opis fizyczny

p.383-394,fig.,ref.

Twórcy

  • Department of Chemistry and Physics, University of Agriculture in Krakow, Krakow, Poland
  • Institute of Chemistry, Environmental Protection and Biotechnology, Jan Dlugosz Academy in Czestochowa, Czestochowa, Poland
autor
  • Nantes Nanotechnological Systems in Boleslawiec, Dolne Mlyny 21, 57-700 Boleslawiec, Poland
autor
  • Department of Clinical Biochemistry, Collegium Medicum Jagiellonian University in Krakow, Krakow, Poland

Bibliografia

  • ARABI A.A., MATTA C.F. 2018. Effects of intense electric fields on the double proton transfer in the Wattson – Crick guanine – cytosine base pair. J. Phys. Chem. B, 122: 8631–8641.
  • ARRUDA-NETO J.D.T. 2015. Sensing of DNA damage, instantly activation of repairing proteins and radio sensitizers. A biophysical model. MOJ Proteomics Bioinform., 2(5): 165.
  • BECKE A.D. 1988. Density-functional exchange-enery approximation with correct asymptotic beha-vior. Phys. Rev. A, 38: 3098–3100.
  • BECKE A.D. 1993. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys., 98: 5648–5662.
  • BERING E.A. III, FEW A.A., BENBROOKE J.R. 1998. The global electric current. Phys. Today, 51(10): 24.
  • BRAUNER C. 1996. Electrosmog – a phantom risk, http://www.emfandhealth.com/Swiss-ReElec-trosmog.pdf, access: 15.03.2019.
  • DREIZLER M.R., GROSS E.K.U. 1990. Density functional theory. Springer, Heidelberg.
  • FRISCH M.J. et al., 1998. GAUSSIAN 98, Gaussian, Inc., Pittsburgh, PA. Gauss, d. 4.1 in CAChe 7.5.0.85 by FUJITSU.
  • HYPERCHEMRELEASE 8.0.7 Molecular Modeling System.
  • JACQUEMIN D., ZUNIGA J., REQUENA A., CERON-CARRASCO J.P. 2014. Assessing the importance of proton transfer reactions in DNA. Acc. Chem. Res., 47: 2467–2474.
  • LEE C., YANG W., PARR R.G. 1988. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B, 37: 785–789.
  • MARINO A.A., BERGER T.J., MITCHELL J.T., DUHACEK B.A., BECKER R.O. 1974. Electric field effects in selected biologic systems. Ann. N. Y. Acad. Sci., 238: 436–444.
  • MARSHALL T.G., RUMANN HEIL T.J. 2017. Electrosmog and autoimmune diseases. Immunol. Res., 65: 129–135.
  • MARUVADA P.S. 2012. Electric field and ion current environment of HVdc transmission lines: Com-parison of calculations and measurements. IEEE Trans. Power Del., 27: 401–410.
  • MAZURKIEWICZ J., KOŁOCZEK H., TOMASIK P. 2015. Effect of the external electric field on selected tripeptides. Amino Acids, 47: 1399–1408.
  • MAZURKIEWICZ J., KOŁOCZEK H., TOMASIK P. 2016. Effect of external electric field on fatty acids and their glycerides. Curr. Phys. Chem., 6: 164–178.
  • MAZURKIEWICZ J., KOŁOCZEK H., TOMASIK P. 2017. Effect of external electric field on model com-plex lipids. Curr. Phys. Chem., 7: 71–80.
  • MAZURKIEWICZ J., TOMASIK P. 2010. Contribution to understanding weak electrical phenomena.Natur. Sci., 2: 1195–1202.
  • MAZURKIEWICZ J., TOMASIK P. 2012. Effect of external electric field upon charge distribution, ener-gy and dipole moment of selected monosaccharide molecules. Natur. Sci., 4: 278–285.
  • MAZURKIEWICZ J., TOMASIK P. 2012a. Effect of external electric field upon lower alkanols. Adv. Natur. Sci., 5(4): 28–35.
  • MAZURKIEWICZ J., TOMASIK P. 2013. Effect of external electric field to porphin and selected metal-loporphyrin systems. Compl. Alter, Med. Sci., 1: 13–21.
  • MAZURKIEWICZ J., TOMASIK P. 2013a. Effect of external electric field on selected proteogenic amino acids. Adv. Natur. Sci. (Canada), 6(1): 1–16.
  • MAZURKIEWICZ J., TOMASIK P. 2014. Effect of external electric field upon selected dipeptides. Adv. Natur. Sci. (Canada), 7(1): 6–11.
  • MAZURKIEWICZ J., TOMASIK P., CIESIELSKI W. 2018. Effect of the external electric field on the structure and reactivity of selected pyrimidine and purine bases. Curr. Phys. Chem., 8: 1–16.
  • MITCHELL J.T., MARINO A.A., BERGER T.J., BECKER R.O. 1978. Effect of electrostatic fields in the chromosomes of Ehrlich ascites tumor cells exposed in vivo. Physiol. Chem. Phys., 10: 79–85.
  • NATIONAL RESEARCH COUNCIL (US) 1993. Committee on Assessment of the Possible Health Ef-fects of Ground Wave Emergency Network (GWEN). Assessment of the Possible Health Effects of Ground Wave Emergency Network. Washington (DC): National Academies Press (US).
  • PETRI A.K., SCHMIEDCHEN K., STUNDER D., DECHENT D., KRAUS T., BAILEYW.H., DRIESSEN S. 2017. Biological effects of exposure to static electric fields in humans and vertebrates: a system-atic review. Environ. Health, 16: 41.
  • STEWART J.J.P. 1998. Encyclopedia of Computational Chemistry. J. Wiley. New York.
  • VAN RONGEN E., SAUNDERS R.D., VAN DEVENTER E.T., REACHOLI M.H. 2007. Static fields: biolog-ical effects and mechanisms relevant to exposure limits. Health Phys., 92:584–90.
  • VIAN A., DAVIES E., GENDRAUD M., BONNET P. 2016. Plant responses to high frequency electromag-netic fields. BioMed Res. Int., Article ID 1830262.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-3e197cf6-d8d4-4bd6-94cf-4b2eac1b874e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.