PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2012 | 15 | 2 |

Tytuł artykułu

The influence of feed phosphates on the structural, mechanical and chemical properties of bone tissue in pigs

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The aim of the study was to assess the influence of various feed phosphates on the structural and mechanical properties as well as on the chemical composition of femurs in adult pigs (weight approx. 110 kg). Three types of phosphates - monocalcium phosphate (MCP), dicalcium phosphate (n-DCP) and calcium-sodium phosphate (CSP) - were used alternatively in pigs fed with the standard feed mixture. The MCP and CSP phosphates were typical, imported products used traditionally in pig feeding. Dicalcium phosphate (n-DCP) was manufactured in Poland on the basis of phosphoric acid with the new pro-ecological method. The following parameters were determined: the mean physical density of the samples of the compact and spongy bone tissue, values of Young's modulus, strength and the energy of deformation, and Vickers microhardness (HV). Also the content of C, O, Na, Mg, Al, and Si, as well as Ca, P and Sr was determined. Significant differences in mean values of the mentioned parameters occurred between the studied groups. The best mechanical properties were shown by the bones from the n-DCP group, and the compact bone tissue (diaphysis) contained the most Ca, P, and Sr when compared to the MCP and CSP groups.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

15

Numer

2

Opis fizyczny

p.275-283,fig.,ref.

Twórcy

autor
  • Division of Biomedical Engineering and Experimental Mechanics, Wroclaw University of Technology, Lukasiewicz 7/9, 50-371 Wroclaw, Poland
autor
autor

Bibliografia

  • Ammann P (2006) Strontium ranelate: a physiological approach for an improved bone quality. Bone 38: 15-18.
  • An YH, Draughn RA (2000) Mechanical testing of bone and bone-implant interface. CRC Press, Boca Raton, London New York Washington DC.
  • Ashman RB, Rho JY (1988) Elastic modulus of trabecular bone material. J Biomech 21: 177-181.
  • Dobrzański Z, Pogoda-Sewerniak K, Dragan S, Korniewicz D, Hoffmann K, Korniewicz A (2010) Effect of various feed phosphates on biochemical indices of blood and mineral composition of bones in finishing pigs. Acta Vet Brno 79: 355-361.
  • Eeckhout W, de Paepe M, Warnants N, Bekaert H (1995) An estimation of the minimal P requirements for growing-finishing pigs, as influenced by the Ca level of the diet. Anim Feed Sci Tech 52: 29-40.
  • Feng L, Jasiuk I (2011) Multi-scale characterization of swine femoral cortical bone. J Biomech 44: 313-320.
  • Hinson RB, Schinckel AP, Radcliffe JS, Allee GL, Sutton AL, Richert BT (2009) Effect of feeding reduced crude protein and phosphorus diets on weaning-finishing pig growth performance, carcass characteristics, and bone characteristics. J Anim Sci 87: 1502-1517.
  • Hoffmann J, Hoffmann K (2009) Badanie procesu wytwarzania paszowych fosforanów wapnia z użyciem stężonego kwasu fosforowego. Przem Chem 5: 450-453.
  • Jackson SA, Cartwright AG, Lewis D (1978) The morphology of bone minerals crystals. Calcif Tissue Res 25: 217-222.
  • Jongbloed AW, Mroz Z, Van Der Weij-Jongbloed R, Kemme PA (2000) The effects of microbial phytase, organic acids and their interaction in diets for growing pigs. Liv Prod Sci 67: 113-122.
  • Korniewicz D, Dobrzański Z, Kołacz R, Hoffmann J, Korniewicz A, Antkowiak K (2012) The effect of various feed phosphates on productivity, slaughter performance and meat quality of fattening pigs. Med Weter (in press). Korniewicz D, Hoffmann J, Korniewicz A, Dobrzanski Z (2010) Effect of new feed phosphate on balance and apparent absorption of calcium and phosphorus in fattening pigs. Ann Anim Sci 10: 459-466.
  • Kuropka P, Kuryszko J, Mazurkiewicz-Łyczewska S (2006) Bone mineralization. Med Weter 62: 557-559.
  • Kuryszko J, Zarzycki J (2000) Animal Histology. 1st ed. PWRiL, Warszawa.
  • Leszczyński P, Hrycaj P, Mackiewicz SH (2007) Inflammation osteoporosis and corticosteroid-induced osteoporosis – the drugs hierarchy. Reumatologia 45: 374-381.
  • Marie PJ (2006) Strontium ranelate: a physiological approach for optimizing bone formation and resorption. Bone 38: 10-14.
  • Michalak I, Chojnacka K, Marycz K (2011) Using ICP-OES and SEM-EDX in biosorption studies. Mikrochim Acta 172: 65-74.
  • Mollard RC, Kohut J, Zhao J, Weiler HA (2004) Proximal intestinal absorption of calcium is elevated in proportion to growth rate but not bone mass is small for gestational age piglets. J Nutr Biochem 15: 149-154.
  • Nikodem A, Kuropka P, Będziński R, Kuryszko J (2004) The influence of choosing chemical methods to bone structures properties. Eng Biomat 38: 194-196.
  • Nikodem A, Ścigała K (2010) Impact of some external factors on the values of mechanical parameters determined in tests on bone tissue. Acta Bioeng Biomech 12: 85-93.
  • Nikodem A, Ścigała K (2012) Biomechanics of physiological and pathological bone structures. In: Rothschild BM (ed) Principles of osteoarthritis – its definition, character, derivation and modality-related recognition. InTech Europe Rijeka, Croatia, pp 113-138.
  • Pagano AR, Yasuda K, Roneker KR, Crenshaw TD, Lei XG (2007) Supplemental Escherichia coli phytase and strontium enhance bone strength of young pigs fed a phosphorus-adequate diet. J Nutr 137: 1795-1801.
  • Peter CM, Parr TM, Parr EN, Webel DM, Baker DH (2001) The effects of phytase on growth performance, carcass characteristics, and bone mineralization of late-finishing pigs fed maize-soyabean meal diets containing no supplemental phosphorus, zinc, copper and manganese. Anim Feed Sci Tech 94: 199-205.
  • Pointillart A, Colin C, Lacroix HC, Gueguen L (1995) Mineral bioavailability and bone mineral contents in pigs given calcium carbonate postprandially. Bone 17: 357-362.
  • Poulsen HD (2007) Phosphorus availability in feed phosphates determined by regression. Livest Sci 109: 247-250.
  • Ruan Z, Zhang YG, Yin YL, Li TJ, Huang RL, Kim SW, Wu GY, Deng ZY (2007) Dietary requirement of true digestible phosphorus and total calcium for growing pigs. Asian-Aust J Anim Sci 20: 1236-1242.
  • Todoh M, Ihara M, Matsumoto T, Tanaka M (2004) Relationship between Mechanical Property of Cancellous Bone and Hardness of Trabeculae, JSME Int J C 47: 1075-1078.
  • Tsezos M, Remoudaki E, Angelatou V (1997) Biosorption sites of selected metals using electron microscopy. Comp Biochem Phys A Phys 118: 481-487.
  • Turner CH, Burr DB (1993) Basic biomechanical measurements of bone: a tutorial. Bone 14: 595-608.
  • Uklejewski R, Winiecki M, Rogala P (2006) On the structural-adaptive compatibility of bone with porous coated implants on the base of the traditional one-phase and the modern two-phase poroelastic biomechanical model of bone tissue. Eng Biomat 54-55: 1-13.
  • Woyengo TA, Sands JS, Guenter W, Nyachoti CM (2008) Nutrient digestibility and performance responses of growing pigs fed phytase and wheat-based diets. J Anim Sci 86: 848-857.
  • Yamada H, Evans FG (1973) Strength of biological materials. 1st ed., Williams and Wilkins, Baltimore

Uwagi

Rekord w opracowaniu

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-3de69020-aca0-4c1a-ac38-17ca4a0a291a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.