Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2014 | 19 | 3 |

Tytuł artykułu

p600 stabilizes microtubules to prevent the aggregation of CaMKIIalpha during photoconductive stimulation

Warianty tytułu

Języki publikacji



The large microtubule-associated/Ca2+-signalling protein p600 (also known as UBR4) is required for hippocampal neuronal survival upon Ca2+ dyshomeostasis induced by glutamate treatment. During this process, p600 prevents aggregation of the Ca2+/calmodulin-dependent kinase IIα (CaMKIIα), a proxy of neuronal death, via direct binding to calmodulin in a microtubuleindependent manner. Using photoconductive stimulation coupled with live imaging of single neurons, we identified a distinct mechanism of prevention of CaMKIIα aggregation by p600. Upon direct depolarization, CaMKIIα translocates to microtubules. In the absence of p600, this translocation is interrupted in favour of a sustained self-aggregation that is prevented by the microtubule-stabilizing drug paclitaxel. Thus, during photoconductive stimulation, p600 prevents the aggregation of CaMKIIα by stabilizing microtubules. The effectiveness of this stabilization for preventing CaMKIIα aggregation during direct depolarization but not during glutamate treatment suggests a model wherein p600 has two modes of action depending on the source of cytosolic Ca2+.








Opis fizyczny



  • Departments of Clinical Neurosciences, Cell Biology and Anatomy, Biochemistry and Molecular Biology, Hotchkiss Brain Institute, University of Calgary, HMRB 153, 3330 Hospital Drive NW, Calgary, Alberta, Canada, T2N 4N1
  • Departments of Clinical Neurosciences, Cell Biology and Anatomy, Biochemistry and Molecular Biology, Hotchkiss Brain Institute, University of Calgary, HMRB 153, 3330 Hospital Drive NW, Calgary, Alberta, Canada, T2N 4N1
  • Molecular Genetics Research Laboratory, Graduate School of Science, University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan
  • Departments of Clinical Neurosciences, Cell Biology and Anatomy, Biochemistry and Molecular Biology, Hotchkiss Brain Institute, University of Calgary, HMRB 153, 3330 Hospital Drive NW, Calgary, Alberta, Canada, T2N 4N1
  • Departments of Clinical Neurosciences, Cell Biology and Anatomy, Biochemistry and Molecular Biology, Hotchkiss Brain Institute, University of Calgary, HMRB 153, 3330 Hospital Drive NW, Calgary, Alberta, Canada, T2N 4N1


  • 1.Erondu, E. and Kennedy, B. Regional distribution of type II Ca2+/Calmodulindependent protein kinase in rat brain. J. Neurosci. 5 (1985) 3270–3277.
  • 2. Lisman, J., Schulman, H. and Cline, H. The molecular basis of CaMKII function in synaptic and behavioural memory. Nat. Rev. Neurosci. 3 (2002) 175–190.
  • 3. Kochhar, A., Saitoh, T. and Zivin, J. Spinal cord ischemia reduces calcium/calmodulin-dependent protein kinase activity. Brain Res. 542 (1991) 141–146.
  • 4. Aronowski, J., Grotta, J. and Waxham, M. Ischemia-induced translocation of Ca2+/calmodulin-dependent protein kinase II: potential role in neuronal damage. J. Neurochem. 58 (1992) 1743–1753.
  • 5. Hanson, S., Grotta, J., Waxham, M., Aronowski, J. and Ostrow, P. Calcium/calmodulin-dependent protein kinase II activity in focal ischemia with reperfusion in rats. Stroke 25 (1994) 466–473.
  • 6. Hudmon, A., Aronowski, J., Kolb, S. and Waxham, M. Inactivation and selfassociation of Ca2+/calmodulin-dependent protein kinase II during autophosphorylation. J. Biol. Chem. 271 (1996) 8800–8808.
  • 7. Dosemeci, A., Reese, T., Petersen, J. and Tao-Cheng, J. A novel particulate form of Ca2+/CaMKII-dependent protein kinase II in neurons. J. Neurosci. 20 (2000) 3076–3084.
  • 8. Hudmon, A., Lebel, E., Roy, H., Sik, A., Schulman, H., Waxham, M. and De Koninck, P. A mechanism for Ca2+/calmodulin-dependent protein kinase II clustering at synaptic and nonsynaptic sites based on self-association. J. Neurosci. 25 (2005) 6971–6983.
  • 9. Tao-Cheng, J., Vinade, L., Smith, C., Winters, C., Ward, R., Brightman, M., Reese, T. and Dosemeci, A. Sustained elevation of calcium induces Ca2+/calmodulin-dependent protein kinase II clusters in hippocampal neurons. Neuroscience 106 (2001) 69–78.
  • 10. Tao-Cheng, J., Vinade, L., Winters, C., Reese, T. and Dosemeci, A. Inhibition of phosphatase activity facilitates the formation and maintenance of NMDA-induced calcium/calmodulin-dependent protein kinase II clusters in hippocampal neurons. Neuroscience 130 (2005) 651–656.
  • 11. Ashpole, N., Song, W., Brustovetsky, T., Engleman, E., Brustovetsky, N., Cummins, T. and Hudmon, A. Calcium/calmodulin-dependent protein kinase II (CaMKII) inhibition induces neurotoxicity via dysregulation of glutamate/calcium signaling and hyperexcitability. J. Biol. Chem. 287 (2012) 8495–8506.
  • 12. Shim, S., Wang, J., Asada, N., Neumayer, G., Tran, H., Ishiguro, K., Sanada, K., Nakatani, Y. and Nguyen, M. Protein 600 is a microtubule/endoplasmic reticulum-associated protein in CNS neurons. J. Neurosci. 28 (2008) 3604–3614.
  • 13. Tasaki, T., Kim, S., Zakrzewska, A., Lee, B., Kang, M., Yoo, Y., Cha-Molstad, H., Hwang, J., Soung, N., Sung, K., Kim, S.-H., Nguyen, M., Sun, M., Yi, E., Kim, B. and Kwon, Y. UBR box N-recognin-4 (UBR4), an N-recognin of the N-end rule pathway, and its role in yolk sac vascular development and autophagy. Proc. Natl. Acad. Sci. U.S.A. 4 (2013) 3800–3805.
  • 14. Nakatani, Y., Konishi, H., Vassilev, A., Kurooka, H., Ishiguro, K., Sawada, J., Ikura, T., Korsmeyer, S. J., Qin, J. and Herlitz, A.M. p600, a unique protein required for membrane morphogenesis and cell survival. Proc. Natl. Acad. Sci. U.S.A. 102 (2005) 15093–15098.
  • 15. Tasaki, T., Mulder, L., Iwamatsu, A., Lee, M., Davydov, I., Varshavsky, A., Muesing, M. and Kwon, Y. A family of mammalian E3 ubiquitin ligases that contain the UBR box motif and recognize N-degrons. Mol. Cell. Biol. 25 (2005) 7120–7136.
  • 16. DeMasi, J. and Huh, K. Bovine papillomavirus E7 transformation function correlates with cellular p600 protein binding. Proc. Natl. Acad. Sci. U.S.A. 103 (2005) 11486–11491.
  • 17. Belzil, C., Neumayer, G., Vassilev, A.P., Yap, K.L., Konishi, H., Rivest, S., Sanada, K., Ikura, M., Nakatani, Y. and Nguyen, M.D. A Ca2+-dependent mechanism of neuronal survival mediated by the microtubule-associated protein p600. J. Biol. Chem. 288 (2013) 24452–24464.
  • 18. Rose, J., Jin, S. and Craig, A. Heterosynaptic molecular dynamics : Locally induced propagating synaptic accumulation of CaM kinase II. Neuron 61 (2009) 351–358.
  • 19. Colicos, M., Collins, B., Sailor, M. and Goda, Y. Remodeling of synaptic actin induced by photoconductive stimulation. Cell. 107 (2001) 605–616.
  • 20. Goda, Y. and Colicos, M. Photoconductive stimulation of neurons cultured on silicon wafers. Nat. Prot. 1 (2006) 461–467.
  • 21. Lemieux, M., Labrecque, S., Tardif, C., Labrie-Dion, E., Lebel, E. and De Koninck, P. Translocation of CaMKII to dendritic microtubules supports the plasticity of local synapses. J. Biol. Chem. 198 (2012) 1055–1073.
  • 22. Furukawa, K. and Mattson, M. Taxol stabilizes [Ca2+]i and protects hippocampal neurons against excitotoxicity. Brain Res. 689 (1995) 141–146.
  • 23. Siman, R. and Noszek, J. Excitatory amino acids activate calpain I and induce structural protein breakdown in vivo. Neuron 1 (1988) 279–287.
  • 24. Pettigrew, L., Holtz, M., Craddock, S., Minger, L., Hall, N. and Geddes, J. Microtubular proteolysis in focal cerebral ischemia. J. Cereb. Blood Flow Metab. 16 (1996) 1189–1202.
  • 25. Chang, B., Mukherji, S. and Soderling, T. Calcium/calmodulin-dependent protein kinase II inhibitor protein: localization of isoforms in rat brain. Neuroscience 102 (2001) 767–777.
  • 26. Hudmon, A., Kim, S., Kolb, S., Stoops, J. and Waxham, M. Light scattering and transmission electron microscopy studies reveal a mechanism for calcium/calmodulin-dependent protein kinase II self-association. J. Neurochem. 76 (2001) 1364–1375.
  • 27. Barria, A., Muller, D., Derkach, V., Griffith, L. and Soderling, T. Regulatory phosphorylation of AMPA-type glutamate receptors by CaM-KII during long-term potentiation. Science 276 (1997) 2042–2045.
  • 28. Barria, A., Derkach, V. and Soderling, T. Identification of the Ca2+/calmodulindependent protein kinase II regulatory phosphorylation site in the α-amino-3- hydroxyl-5-methyl-4-isoxazole-propionate-type glutamate receptor. J. Biol. Chem. 272 (1997) 32727–32730.
  • 29. Hudmon, A., Schulman, H., Kim, J., Maltez, J., Tsien, R. and Pitt, G. CaMKII tethers to L-type Ca2+ channels, establishing a local and dedicated integrator of Ca2+ signals for facilitation. J. Cell. Biol. 171 (2005) 537–547.
  • 30. Sanhueza, M., Fernandez-Villalobos, G., Stein, I.S., Kasumova, G., Zhang, P., Bayer, K.U., Otmakhov, N., Hell, J.W. and Lisman, J. Role of the CaMKII/NMDA receptor complex in the maintenance of synaptic strength. J. Neurosci. 31 (2011) 9170–9178.
  • 31. Vallano, M.L., Goldenring, J.R., Lasher, R.S. and Delorenzo, R.J. Association of calcium/calmodulin-dependent kinase with cytoskeletal preparations: phosphorylation of tubulin, neurofilament, and microtubuleassociated proteins proteins. Ann. N.Y. Acad. Sci. 466 (1986) 357–374.
  • 32. Wandosell, F., Serrano, L., Hernández, M.A. and Avila, J. Phosphorylation of tubulin by a calmodulin-dependent protein kinase. J. Biol. Chem. 261 (1986) 10332–10339.
  • 33. Craddock, T.J., Tuszynski, J.A. and Hameroff, S. Cytoskeletal signaling: is memory encoded in microtubule lattices by CaMKII phosphorylation? PLoS Comp. Biol. 8 (2012) e1002421. 34. Goldschmidt, R. and Steward, O. Preferential neurotoxicity of colchicine for granule cells of the dentate. Proc. Natl. Acad. Sci. USA 77 (1980) 3047–3051.
  • 35. Kristensen, B., Noer, H., Gramsbergen, J., Zimmer, J. and Noraberg, J. Colchicine induces apoptosis in organotypic hippocampal slice cultures. Brain Res. 964 (2003) 264–278

Typ dokumentu



Identyfikator YADDA

JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.