PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2017 | 19 | 1 |

Tytuł artykułu

Assessing bat roosts using the LiDAR system at wind cave nature reserve in Sarawak, Malaysian Borneo

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Conventionally, bat roost counts and roost size estimation are potentially a disruptive, repetitive method and are time consuming. Introduction of the Light Detection and Ranging (LiDAR) scanning system, an optical remote sensing technology, for scientific purposes have open many research possibilities especially on cave wildlife surveys. Scanned images at high resolution provide new effective biological tools for assessing bat roosts inside caves on walls or ceiling in total darkness. LiDAR system was applied to census bats that roost in Wind Cave Nature Reserve, Sarawak, Malaysia, based on laser return intensity values from the images. Bats that roost in large clusters, specifically Penthetor lucasi were determined through automated counting using connected components labelling, a graph theory algorithm mostly used in image analysis applications. Roost surface area of bats species was calculated based on point clouds extracted and using simple trigonometry. Wind Cave was successfully modelled into three dimensional (3D) cave images with bats roosting inside the cave. The roost sites of bats in the cave were represented in coloured point clouds that represent the species. Through LiDAR images, bats in Wind Cave consisted of about 979 individuals of P. lucasi and 1,907 individuals of insectivorous bats from nine species representing four families. There is a positive correlation between group size and roost area. For every additional bat, roost area is expected to increase by an average of 1.75 m2. Our result suggested that terrestrial LiDAR technology is capable of assessing bat roosts in their natural habitat to determine their roost size and number of individuals that roost in the cave. Terrestrial LiDAR application is most complementary when integrated with field surveys to produce more reliable outcomes which open up possibilities of effective conservation action plans.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

19

Numer

1

Opis fizyczny

p.199-210,fig.,ref.

Twórcy

autor
  • Department of Zoology, Faculty of Resource Science and Technology, Universiti Malaysia Sarawak, 94300 Kota Samarahan, Sarawak, Malaysia
autor
  • Department of Biosciences and Health Sciences, Faculty of Biosciences and Medical Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia
autor
  • Department of Biosciences and Health Sciences, Faculty of Biosciences and Medical Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia
  • Centre for Pre-University Studies, Universiti Malaysia Sarawak, 94300 Kota Samarahan, Sarawak, Malaysia
  • Centre for Pre-University Studies, Universiti Malaysia Sarawak, 94300 Kota Samarahan, Sarawak, Malaysia
autor
  • Department of Zoology, Faculty of Resource Science and Technology, Universiti Malaysia Sarawak, 94300 Kota Samarahan, Sarawak, Malaysia

Bibliografia

  • 1. Azmy, S. N., S. A. Mohdsah, N. J. Shafie, A. Ariffin, Z. Majid, M. N. A. Ismail, and M. S. Shamsir. 2012. Counting in the dark: non-intrusive laser scanning for population counting and identifying roosting bats. Science Report, 2: 524. Google Scholar
  • 2. Barapoi, I. P. 2004. Population estimation of Penthetor lucasi in Wind Cave, Bau, Sarawak. B.Sc. Thesis, Universiti Malaysia, Sarawak, Malaysia, 24 pp. Google Scholar
  • 3. Boyles, J. G., J. J. Storm, and V. Brack, Jr . 2008. Thermal benefits of clustering during hibernation: a field test of competing hypotheses on Myotis sodalis. Functional Ecology, 22: 632–636. Google Scholar
  • 4. Brunet, A. K., and R. A. Medellín. 2001. The species-area relationship in bat assemblages of tropical caves. Journal of Mammalogy, 82: 1114–1122. Google Scholar
  • 5. Dassot, M., T. Constant, and M. Fournier. 2011. The use of terrestrial LiDAR technology in forest science: application fields, benefits and challenges. Annals of Forest Science, 68: 959–974. Google Scholar
  • 6. Davies, A. B., and G. P. Asner. 2014. Advances in animal ecology from 3D-LiDAR ecosystem mapping. Trends in Ecology and Evolution, 29: 681–691. Google Scholar
  • 7. Dee, J. 2014. Diversity of bats in Wind Cave Nature Reserve, Bau, Sarawak. B.Sc. Thesis, Universiti Malaysia, Sarawak, Malaysia, 28 pp. Google Scholar
  • 8. Fryer, J. G., J. H. Chandler, and S. F. El-Hakim. 2005. Recording and modelling an aboriginal cave painting: with or without laser scanning. International Archives of Photogrammetry, Remote Sensing and Spatial Information Systems, 36: 1–8. Google Scholar
  • 9. Furey, N. M., and P. A. Racey. 2016. Conservation ecology of cave bats. Pp. 463–500, in Bats in the Anthropocene: conservation of bats in a changing world ( C. C. Voigt and T. Kingston, eds.). Springer International Publishing, New York, ix + 606 pp. Google Scholar
  • 10. Goetz, S., D. Steinberg, R. Dubayah, and B. Blair. 2007. Laser remote sensing of canopy habitat heterogeneity as a predictor of bird species richness in an eastern temperate for est, USA. Remote Sensing of Environment, 108: 254–263. Google Scholar
  • 11. Gupta, P., and M. Bundele. 2016. A new approach for rice quality analysis and classification using thresholding-based classifier. Pp. 529–539, in Proceedings of Fifth International Conference on Soft Computing for Problem Solving ( M. Pant, K. Deep, J. C. Bansal, A. Nagar, and K. N. Das, eds.). Springer International Publishing, Singapore, xix + 1045 pp. Google Scholar
  • 12. Hristov, N. I., M. Betke, D. E. Theriault, A. Bagchi, and T. H. Kunz. 2010. Seasonal variation in colony size of Brazilian free-tailed bats at Carlsbad Cavern based on thermal imaging. Journal of Mammalogy, 91: 183–192. Google Scholar
  • 13. Hunter, D. 2010. A field trial of common hand-held cave survey instruments and their readers. Bullita Cave System, 183: 10–12. Google Scholar
  • 14. Jing, H., L. Peiyuan, and C. Hanwei. 2014. Research on the rice counting method based on connected component labelling. Pp. 552–555, in Proceedings, 2014 Sixth International Conference on Measuring Technology and Mechatronics Automation ( Q. T. Sen and Y. H. Wu, eds.). The Institute of Electrical and Electronics Engineers, Inc., USA, i + 813 pp. Google Scholar
  • 15. Jub, N. 2004. Comparison of harp traps and mist nets trapping techniques for chiropteran diversity and abundance around Fairy Cave limestone area, Bau, Sarawak. B.Sc. Thesis, Universiti Malaysia, Sarawak, Malaysia, 86 pp. Google Scholar
  • 16. Jung, K., S. Kaiser, S. Bohm, J. Nieschulze, and E. K. V. Kalko. 2012. Moving in three dimensions: effects of structural complexity on occurrence and activity of insectivorous bats in managed forest stands. Journal of Applied Ecology, 49: 523–531. Google Scholar
  • 17. Karim, C., A. A. Tuen, and M. T. Abdullah. 2004. Mammals. Sarawak Museum Journal, 6: 221–234. Google Scholar
  • 18. Kazhdan, M., and H. Hoppe. 2013. Screened poisson surface reconstruction. ACM Transactions on Graphics, 32: 1–13. Google Scholar
  • 19. Kazhdan, M., M. Bolitho, and H. Hoppe. 2006. Poisson surface reconstruction. Pp. 61–70, in Proceedings of the Fourth Eurographics Symposium on Geometry Processing ( K. Polthier and A. Sheffer, eds.). Eurographics Association, Cagliari, Italy, vii + 836 pp. Google Scholar
  • 20. Kingston, T. 2010. Research priorities for bat conservation in Southeast Asia: a consensus approach. Biodiversity and Conservation, 19: 471–484. Google Scholar
  • 21. Kingston, T., B. L. Lim, and A. Zubaid. 2006. Bats of Krau Wild life Reserve. Penerbit Universiti Kebangsaan Malaysia, Bangi, Malaysia, 145 pp. Google Scholar
  • 22. Kofoky, A., D. Andriafidison, F. Ratrimomanarivo, H. J. Razafimanahaka, D. Rakotondravony, P. A. Racey, and R. K. Jenkins. 2007. Habitat use, roost selection and conservation of bats in Tsingy de Bemaraha National Park, Madagascar. Biodiversity and Conservation, 16: 1039–1053. Google Scholar
  • 23. Kunz, T. H. 1982. Roosting ecology of bats. Pp. 1–55, in Ecology of bats ( T. H. Kunz, ed.). Springer International Publishing, New York, xviii + 450 pp. Google Scholar
  • 24. Lato, M. J., M. S. Diederichs, and D. J. Hutchinson. 2010. Bias correction for view-limited Lidar scanning of rock outcrops for structural characterization. Rock Mechanics and Rock Engineering, 43: 615–628. Google Scholar
  • 25. Luo, J., T. Jiang, G. Lu, L. Wang, J. Wang, and J. Feng. 2013. Bat conservation in China: should protection of subterranean habitats be a priority? Oryx, 47: 526–531. Google Scholar
  • 26. McFarlane, D. A., G. V. Rentergem, A. Ruina, J. Lundberg, and K. Christenson. 2015a. Estimating colony size of the wrinkle-lipped bat, Chaerephon plicatus (Chiroptera: Molos sidae) at Gomantong, Sabah, by quantitative image analysis. Acta Chiropterologica, 17: 171–177. Google Scholar
  • 27. McFarlane, D. A., W. Roberts, M. Buchroithner, G. Van Rentergem, J. Lundberg, and S. Hautz. 2015b. Terrestrial LiDAR-based automated counting of swiftlet nests in the caves of Gomantong, Sabah, Borneo. International Journal of Speleology, 44: 191–195. Google Scholar
  • 28. Meredith, M., J. Wooldridge, and B. Lyon. 1992. Giant caves of Borneo. Tropical Press, Kuala Lumpur, 142 pp. Google Scholar
  • 29. Mohammed Oludare, I., and B. Pradhan. 2016. A decade of modern cave surveying with terrestrial laser scanning: A review of sensors, method and application development. International Journal of Speleology, 45: 71–88. Google Scholar
  • 30. Mohd-Azlan, J., J. Neuchlos, and M. T. Abdullah. 2005. Diversity of chiropterans in limestone forest area, Bau, Sarawak. Malaysian Applied Biology, 34: 59–64. Google Scholar
  • 31. Mohd Ridwan, A. R., R. C. T. Tingga, N. H. Hasan, S. Wiantoro, A. S. Achmadi, E. Lit, K. Besar, H. I. Husin, and M. T. Abdullah. 2010. Diversity of bats in two protected limestone areas in Sarawak, Malaysian Borneo. Sarawak Museum Journal, 88: 209–243. Google Scholar
  • 32. Mohd Ridwan, A. R., R. C. T. Tingga, M. I. Azhar, N. H. Hasan, and M. T. Abdullah. 2011. Bats of the Wind Cave Nature Reserve, Sarawak, Malaysian Borneo. Tropical Natural History, 11: 159–175. Google Scholar
  • 33. Mould, A. 2012. Cave bats of the central west coast and southern section of the Northwest Panay Peninsula, Panay Island, the Philippines. Journal of Threatened Taxa, 4: 2993–3028. Google Scholar
  • 34. Müller, J., and R. Brandl. 2009. Assessing biodiversity by remote sensing in mountainous terrain: the potential of LiDAR to predict forest beetle assemblages. Journal of Applied Ecology, 46: 897–905. Google Scholar
  • 35. Müller, J., J. Stadler, and R. Brandl. 2010. Composition versus physiognomy of vegetation as predictors of bird assemblages: the role of lidar. Remote Sensing of Environment, 114: 490–495. Google Scholar
  • 36. Nagy, Z. L., and T. Postawa. 2011. Seasonal and geographical distribution of cave-dwelling bats in Romania: implications for conservation. Animal Conservation, 14: 74–86. Google Scholar
  • 37. Niu, H., N. Wang, L. Zhao, and J. Liu. 2007. Distribution and underground habitats of cave-dwelling bats in China. Animal Conservation, 10: 470–477. Google Scholar
  • 38. Olson, C. R., and R. M. Barclay. 2013. Concurrent changes in group size and roost use by reproductive female little brown bats (Myotis lucifugus). Canadian Journal of Zoology, 91: 149–155. Google Scholar
  • 39. Payne. J., C. M. Francis, and K. Philips. 1985. A field guide to the mammals of Borneo. The Sabah Society and WWF Malaysia, Kota Kinabalu, 332 pp. Google Scholar
  • 40. Rosli, Q. S. 2014. Roost mapping of cave bats in Wind Cave Nature Reserve, Bau, Sarawak. B.Sc. Thesis, Universiti Malaysia, Sarawak, Malaysia, 61 pp. Google Scholar
  • 41. Rushisham, M. A. S. 2015. Photographic estimation of roosting density of dusky fruit bat, Penthetor lucasi in Wind Cave Nature Reserve, Sarawak. B.Sc. Thesis, Universiti Malaysia, Sarawak, Malaysia, 30 pp. Google Scholar
  • 42. Schütz, M., and M. Wimmer. 2015. Rendering large point clouds in web browsers. Proceedings of Central European Seminar on Computer Graphics, 19: 83–90. Google Scholar
  • 43. Sikes, R. S., W. L. Gannon, and THE ANIMAL CARE AND USE COMMITTEE OF THE AMERICAN SOCIETY OF MAMMALOGISTS. 2011. Guidelines of the American Society of Mammalogists for the use of wild mammals in research. Journal of Mammalogy, 92: 235–253. Google Scholar
  • 44. Speakman, J. R., N. Irwin, N. Tallach, and R. Stone. 1999. Effect of roost size on the emergence behavior of pipistrelle bats. Animal Behaviour, 58: 787–795. Google Scholar
  • 45. Struebig, M. J., T. Kingston, A. Zubaid, S. C. L. Comber, A. Mohd-Adnan, A. Turner, J. Kelly, M. Bozek, and S. J. Rossiter. 2009. Conservation importance of limestone karstoutcrops for palaeotropical bats in fragmented landscape. Biological Conservation, 142: 2089–2096. Google Scholar
  • 46. Vierling, K. T., C. Bässler, R. Brandl, L. A. Vierling, I. Weiss, and J. Müller. 2011. Spinning a laser web: predicting spider distributions using LiDAR. Ecological Applications, 21: 577–588. Google Scholar
  • 47. Walston, J., T. Kingston, and A. M. Hutson. 2008. Rhinolophus affinis. The IUCN Red List of Threatened Species. Version 2015.1. Available at www.iucnredlist.org. Downloaded on 22 June 2015. Google Scholar
  • 48. Wedding, L. M., and A. M. Friedlander. 2008. Determining the influence of seascape structure on coral reef fishes in Hawaii using a geospatial approach. Marine Geodesy, 31: 246–266. Google Scholar
  • 49. Wijayanti, F. 2011. Ekologi, relung pakan dan strategi adaptasi kelelawar penghuniguadi karst Gombong Kebumen Jawa Tengah. Ph.D. Thesis, Institut Pertanian Bogor, Indonesia, 153 pp. Google Scholar
  • 50. Wilford, G. E. 1964. The geology of Sarawak and Sabah caves. Geological Survey, Borneo Region, Malaysia, 181 pp. Google Scholar

Typ dokumentu

Bibliografia

Identyfikator YADDA

bwmeta1.element.agro-3d63b249-8689-4cfd-8ece-602b63e37cde
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.