PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2019 | 28 | 1 |

Tytuł artykułu

Microzooplankton grazing and phytoplankton growth in a Chinese Lake

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Microzooplankton plays an important role in controlling the standing crop of phytoplankton and primary production. However, research on microzooplankton grazing has mainly focused on the ocean and only rarely on eutrophic lakes. In this study we investigated plankton community structures, microzooplankton grazing rates (m), and phytoplankton growth rates (μ) in order to explore microzooplankton grazing in 2 eutrophic sub-lakes of West Lake, Hangzhou, China (Waihu and Xilihu). Results showed that Pseudanabaena sp. was dominant in Waihu without submerged macrophytes, and the larger phytoplankton (>2 μm) biomass was higher than the picophytoplankton (<2 μm) biomass. However, Xilihu with macrophytes growing was mainly composed of diatoms and green algae, and there was no significant difference between larger phytoplankton and picophytoplankton biomass. Furthermore, in West Lake, the values of m (ranging from 1.58~3.33/d) and μ (ranged from 1.38~3.05/d) were higher than those in the ocean. The higher m, μ, and relative preference index (RPI) for picophytoplankton in Waihu indicated that microzooplankton had a significant size-selective grazing on picophytoplankton. However, no significant size-selection was found in Xilihu. These different responses of plankton in Waihu and Xilihu might explain why larger phytoplankton occupy a dominant position in eutrophic lakes.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

28

Numer

1

Opis fizyczny

p.225-235,fig.,ref.

Twórcy

autor
  • State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
  • University of Chinese Academy of Sciences, Beijing, China
autor
  • State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
  • University of Chinese Academy of Sciences, Beijing, China
autor
  • State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
  • University of Chinese Academy of Sciences, Beijing, China
autor
  • State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
  • University of Chinese Academy of Sciences, Beijing, China
autor
  • State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
autor
  • State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
autor
  • State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
autor
  • State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China

Bibliografia

  • 1. LENZ J. Microbial loop, microbial food web and classical food chain: Their significance in pelagic marine ecosystems. Arch. Hydrobiol. Beih. Ergebn. Limnol. 37, 265, 1992.
  • 2. SAILLEY S.F., BUITENHUIS E.T. Microzooplankton functional responses in the lab and in the field. Earth Syst. Sci. Data Discuss. 7 (1), 149, 2014.
  • 3. ABBATE M.C.L., DE CAO M.S.B., PETTIGROSSO R.E., GUINDER V.A., DUTTO M.S., BERASATEGUI A.A., CHAZARRETA C.J., HOFFMEYER M.S. Seasonal changes in microzooplankton feeding behavior under varying eutrophication level in the Bahía Blanca estuary (SW Atlantic Ocean). J. Exp. Mar. Biol. Ecol. 481, 25, 2016.
  • 4. CALBET A., LANDRY M.R. Phytoplankton growth, microzooplankton grazing, and carbon cycling in marine systems. Limnol. Oceanogr. 49 (1), 51, 2004.
  • 5. GRINIENĖ E., ŠULČIUS S., KUOSA H. Size-selective microzooplankton grazing on the phytoplankton in the Curonian Lagoon (SE Baltic Sea). Oceanologia. 58 (4), 292, 2016.
  • 6. YANG E.J., HA H.K., KANG S.H. Microzooplankton community structure and grazing impact on major phytoplankton in the Chukchi Sea and the western Canada Basin, Arctic Ocean. Deep-Sea Res. II. 120, 91, 2015.
  • 7. ZHOU L., TAN Y., HUANG L., HU Z., KE Z. Seasonal and size-dependent variations in the phytoplankton growth and microzooplankton grazing in the southern South China Sea under the influence of the East Asian monsoon. Biogeosciences. 12 (22), 6809, 2015.
  • 8. DIODATO S.L., HOFFMEYER M.S. Contribution of planktonic and detritic fractions to the natural diet of mesozooplankton in Bahía Blanca Estuary. Hydrobiologia. 614 (1), 83, 2008.
  • 9. SUN J., FENG Y., ZHANG Y., HUTCHINS D.A. Fast microzooplankton grazing on fast-growing, low-biomass phytoplankton: a case study in spring in Chesapeake Bay, Delaware Inland Bays and Delaware Bay. Hydrobiologia. 589 (1), 127, 2007.
  • 10. BURIAN A., SCHAGERL M., YASINDI A. Microzooplankton feeding behaviour: grazing on the microbial and the classical food web of African soda lakes. Hydrobiologia. 710 (1), 61, 2013.
  • 11. SAHU B.K., SRICHANDAN S., PANIGRAHY R.C. A preliminary study on the microzooplankton of Chilika Lake, a brackish water lagoon on the east coast of India. Environ. Monit. Assess. 188 (1), 69, 2016.
  • 12. ZHANG Y., LIU X., QIN B., SHI K., DENG J., ZHOU Y. Aquatic vegetation in response to increased eutrophication and degraded light climate in Eastern Lake Taihu: Implications for lake ecological restoration. Sci. Rep. 6, 23867, 2016.
  • 13. STATE EPA OF CHINA (ED.). Monitoring and determination methods for water and wastewater, 4th ed. China Environmental Science Press, Beijing, 2002 [In Chinese].
  • 14. CHEN Q. Most common freshwater algal images of Zhejiang province(drinking water sources). China Environmental Science Press, Beijing, 2010 [In Chinese].
  • 15. WANG J.J. Freshwater rotifers of China. Science Press, Beijing, 1961 [In Chinese].
  • 16. SHEN Y.F., ZHANG Z.S., GONG X.J. New monitoring technology of microorganism. China Construction Press, Beijing, 1990 [In Chinese].
  • 17. CALBET A., SAIZ E. Effects of trophic cascades in dilution grazing experiments: from artificial saturated feeding responses to positive slopes. J. Plankton Res. 35 (6), 1183, 2013.
  • 18. LANDRY M.R., KIRSHTEIN J., CONSTANTINOU J. A refined dilution technique for measuring the community grazing impact of microzooplankton, with experimental tests in the central equatorial Pacific. Mar. Ecol. Prog. Ser. Oldendorf. 120 (1), 53, 1995.
  • 19. APPLE J.K., STROM S.L., PALENIK B., BRAHAMSHA B. Variability in protist grazing and growth on different marine Synechococcus isolates. Appl. Environ. Microb. 77 (9), 3074, 2011.
  • 20. OBAYASHI Y., TANOUE E. Growth and mortality rates of phytoplankton in the northwestern North Pacific estimated by the dilution method and HPLC pigment analysis. J.Exp. Mar. Biol. Ecol. 280 (1), 33, 2002.
  • 21. MARAÑÓN E., CERMEÑO P., LÓPEZ-SANDOVAL D. C., RODRÍGUEZ-RAMOS T., SOBRINO C., HUETE-ORTEGA M., RODRÍGUEZ J. Unimodal size scaling of phytoplankton growth and the size dependence of nutrient uptake and use. Ecol. Lett. 16 (3), 371, 2013.
  • 22. MOORE C.M., MILLS M.M., ARRIGO K.R., BERMAN-FRANK I., BOPP L., BOYD P.W., JICKELLS T.D. Processes and patterns of oceanic nutrient limitation. Nat. Geosci. 6 (9), 701, 2013.
  • 23. NÕGES T., LUUP H., FELDMANN T. Primary production of aquatic macrophytes and their epiphytes in two shallow lakes (Peipsi and Võrtsjärv) in Estonia. Aquat. Ecol. 44 (1), 83, 2010.
  • 24. KÖHLER J., HACHOŁ J., HILT S. Regulation of submersed macrophyte biomass in a temperate lowland river: Interactions between shading by bank vegetation, epiphyton and water turbidity. Aquat. Bot. 92 (2), 129, 2010.
  • 25. GUDMUNDSDOTTIR R., OLAFSSON J.S., PALSSON S., GISLASON G.M., MOSS B. How will increased temperature and nutrient enrichment affect primary producers in sub-Arctic streams? Freshwater Biol. 56 (10), 2045, 2011.
  • 26. CLAUSING R.J., FONG P. Environmental variability drives rapid and dramatic changes in nutrient limitation of tropical macroalgae with different ecological strategies. Coral Reefs. 35 (2), 669, 2016.
  • 27. WANG C., LEI A.P., ZHOU K., HU Z.Y., HAO W.L., YANG J.D. Growth and Nitrogen Uptake Characteristics Reveal Outbreak Mechanism of the Opportunistic Macroalga Gracilaria tenuistipitata. PloS One. 9 (10), 2014.
  • 28. CHRIATIANSEN N.H., ANDERSEN F.O., JENSEN H.S. Phosphate uptake kinetics for four species of submerged freshwater macrophytes measured by a P-33 phosphate radioisotope technique. Aquat. Bot. 128, 58, 2015.
  • 29. JEPPESEN E., PEDER JENSEN, J., SØNDERGAARD M., LAURIDSEN T., LANDKILDEHUS F. Trophic structure, species richness and biodiversity in Danish lakes: changes along a phosphorus gradient. Freshwater Biol. 45 (2), 201, 2000.
  • 30. SONG H., XU J.H., LAVOIE M., FAN X.J., LIU G.F., SUN L.W., FU Z.W. QIAN H.F. Biological and chemical factors driving the temporal distribution of cyanobacteria and heterotrophic bacteria in a eutrophic lake (West Lake, China). Appl. Microbiol. Biot. 101, 1685, 2017.
  • 31. NIE Z.Y., LIANG X.Q., XING B., YE Y.S., QIAN Y.C., YU Y.W., BIAN J.Y., GU J.T., CHEN Y. The current water trophic status in Tiaoxi River of Taihu Lake watershed and corresponding coping strategy based on N/P ratio analysis. Acta Ecol. Sin. 32 (1), 48, 2012 [In Chinese].
  • 32. WONG W.H., RABALAIS N.N., TURNER R.E. Size-dependent top-down control on phytoplankton growth by microzooplankton in eutrophic lakes. Hydrobiologia. 763 (1), 97, 2016.
  • 33. FIRST M.R., LAVRENTYEV P.J., JOCHEM F.J. Patterns of microzooplankton growth in dilution experiments across a trophic gradient: Implications for herbivory studies. Mar. Biol. 151 (5), 1929, 2007.
  • 34. ZHOU X.Z., HE Z.L., JONES K.D., LI L.G., STOFFELLA P.J. Dominating aquatic macrophytes for the removal of nutrients from waterways the Indian River Lagoon basin, South Florida, USAXiaohong. Ecol. Eng. 101, 107, 2017.
  • 35. ZENG L., HE F., ZHANG Y., LIU B.Y., DAI Y.R., ZHOU Q.H., WU Z.B. How submerged macrophyte restoration promotes a shift of phytoplankton community in a shallow subtropical lake. Pol. J. Environ.Stud. 26 (3), 1363, 2017.
  • 36. SUN J., MA L., WANG L., HU Y., ZHANG Y., WU Z.B., HE F. Assessing the Effects of Grass Carp Excretion and Herbivory of Submerged Macrophytes on Water Quality and Zooplankton Communities. Pol. J. Environ. Stud. 26 (4), 1681, 2017.
  • 37. CIURLI A., ZUCCARINI P., ALPI A. Growth and nutrient absorption of two submerged aquatic macrophytes in mesocosms, for reinsertion in a eutrophicated shallow lake. Wetl. Ecol. Manag. 17 (2), 107, 2009.
  • 38. Zhou Y., Zhou X., Han R., Xu X., Wang G., Liu X., Bi F.Z., Feng D. Reproduction capacity of Potamogeton crispus fragments and its role in water purification and algae inhibition in eutrophic lakes. Sci. Total Environ. 580, 1421, 2017.
  • 39. WANG H.Q., LIANG F., ZHANG L.Y. Composition and Anti-Cyanobacterial Activity of Essential Oils from Six Different Submerged Macrophytes. Pol. J. Environ. Stud. 24 (1), 333, 2015.
  • 40. YAO Y., HE F., HU S.H., KONG L.W., LIU B.Y., ZENG L., ZHANG L.P., WU Z.B. Effects of allelopathy of submerged macrophytes on the phytoplankton community collected from the west part of the West Lake wetland in Hangzhou, China. Acta Ecol. Sin. 36 (4), 971, 2016 [In Chinese].
  • 41. AKHURST D.J., JONES G.B., CLARK M., REICHELT-BRUSHETT A. Effects of fish and macrophytes on phytoplankton and zooplankton community structure in a subtropical freshwater reservoir. Limnology. 62, 5, 2017.
  • 42. MUYLAERT K., PEREZ-MARTINEZ Z., SANCHEZ-CASTILLO P., LAURIDSEN T.L., VANDERSTUKKEN M., DECLERCK S.A.J., VAN DER GUCHT K., CONDE-PORCUNA J.M., JEPPESEN E., DE MEESTER L. Influence of nutrients, submerged macrophytes and zooplankton grazing on phytoplanktonbiomass and diversity along a latitudinal gradient in Europe. Hydrobiologia. 653 (1), 79, 2010.
  • 43. SYMONS C.C., ARNOTT S.E., SWEETMAN J.N. Grazing rates of crustacean zooplankton communities on intact phytoplankton communities in Canadian Subarctic lakes and ponds. Hydrobiologia. 694 (1), 131, 2012.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-3d5fd1d1-7598-4d40-89ad-388218522daf
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.