PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2014 | 13 | 2 |

Tytuł artykułu

In vitro adventitious shoots regeneration from ligulate florets in the espect of application in Chrysanthemum breeding

Treść / Zawartość

Warianty tytułu

PL
Regeneracja in vitro pędów przybyszowych z kwiatów języczkowatych w aspekcie zastosowania w hodowli chryzantemy

Języki publikacji

EN

Abstrakty

EN
Chrysanthemum mutants can be chimeras. The regeneration in vitro of adventitious shoots from ligulate florets can lead to the separation of chimera components, resulting in producing a new cultivar. There was determined the effect of various factors on the number and length of shoots regenerating in vitro from ligulate florets of Chrysanthemum × grandiflorum (Ramat.) Kitam. ‘Cool Time’. The ligulate florets were inoculated on the MS [1962] medium supplemented with cytokinin (0; 4.44; 8.88; 13.32; 22.20 μM·dm-3 BAP; 4.65; 23.23; 46.47; 69.70 μM·dm-3 KIN) and auxin (0; 0.54; 1.08; 1.61; 2.69 μM·dm-3 NAA). Most shoots regenerate when 8.88; 13.32 μM·dm-3 BAP or 69.70 μM·dm-3 KIN and 2.69 μM·dm-3 NAA or 8.88 μM·dm-3 BAP and 1.61 μM·dm-3 NAA are supplemented. Adding 0.29; 1.44 or 2.89 μM·dm-3 GA3 to the MS medium with 8.88 μM·dm-3 BAP and 2.69 μM·dm-3 NAA limits the shoot regeneration efficiency and does not stimulate their elongation. An increase in the shoot number and length is affected by the subculture of regenerating ligulate florets from the MS medium containing 8.88 μM·dm-3 BAP and 2.69 μM·dm-3 NAA on the medium with 2.89 μM·dm-3 GA3 and 2.69 μM·dm-3 NAA. There were found no differences in the number and length of shoots regenerating on ligulate florets inoculated on solid or in liquid MS medium with 8.88 μM·dm-3 BAP and 2.69 μM·dm-3 NAA. The subculture of regenerating ligulate florets from the solid into liquid medium increases the number of regenerating shoots and stimulates their elongation growth, however these shoots are deformed.
PL
Mutanty chryzantem mogą był chimerami. Regeneracja in vitro pędów przybyszowych z kwiatów języczkowatych może doprowadzić do rozdzielenia komponentów składowych chimery i w rezultacie do uzyskania nowej odmiany. W badaniach określono wpływ różnych czynników na liczbę i długość pędów regenerujących in vitro z kwiatów języczkowatych Chrysanthemum × grandiflorum (Ramat.) Kitam. ‘Cool Time’. Kwiaty języczkowate inokulowano na pożywkę MS [1962] uzupełnioną cytokininą (0; 4,44; 8,88; 13,32; 22,20 μM·dm-3 BAP; 4,65; 23,23; 46,47; 69,70 μM·dm-3 KIN) oraz auksyną (0; 0,54; 1,08; 1,61; 2,69 μM·dm-3 NAA). Stwierdzono, Īe najwięcej pędów regeneruje przy dodatku do pożywki 8,88; 13,32 μM·dm-3 BAP lub 69,70 μM·dm-3 KIN i 2,69 μM·dm-3 NAA albo 8,88 μM·dm-3 BAP i 1,61 μM·dm-3 NAA. Dodatek 0,29; 1,44 lub 2,89 μM·dm-3 GA3 do pożywki MS z 8,88 μM·dm-3 BAP i 2,69 μM·dm-3 NAA ogranicza wydajność regeneracji pędów i nie stymuluje ich elongacji. Na zwiększenie liczby i długości pędów wpływa przeniesienie regenerujących kwiatów języczkowatych z poĪywki MS zawierającej 8,88 μM·dm-3 BAP i 2,69 μM·dm-3 NAA na pożywka z 2,89 μM·dm-3 GA3 i 2,69 μM·dm-3 NAA. Nie stwierdzono różnic w liczbie i długości pędów powstających na kwiatach języczkowatych umieszczonych na stałej lub w płynnej pożywce MS z 8,88 μM·dm-3 BAP i 2,69 μM·dm-3 NAA. Przeniesienie regenerujących kwiatów języczkowatych z pożywki stałej do płynnej zwiększa liczbę regenerujących pędów i stymuluje ich wzrost elongacyjny. Pędy te jednak są zdeformowane.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

13

Numer

2

Opis fizyczny

p.45-58,fig.,ref.

Twórcy

autor
  • Laboratory of Biotechnology, Department of Ornamental Plants and Vegetable Crops, University of Technology and Life Science, Bernardyska 6, 85-029 Bydgoszcz, Poland
autor
  • University of Technology and Life Science, Bydgoszcz, Poland,

Bibliografia

  • Ahroni A., Zuker A., Rozen Y., Shejtman H., Vainstein A., 1997. An efficient method for adventitious shoot regeneration from stem-segment explants of gypsophila. Plant Cell Tiss. Org. Cult. 49, 101–106.
  • Burge G.K., Morgan E.R., Seelye J., 2002. Opportunities for synthetic plant chimeral breeding: Past and future. Plant Cell Tiss. Org. Cult. 70, 13–21.
  • Bush S.R., Earle E.D., Langhans R.W., 1976. Plantlets from petal segments, petal epidermis, and shoot tips of the periclinal chimera Chrysanthemum morifolium ‘Indianapolis’. Am. J. Bot. 63(6), 729–737.
  • Chakrabarty D., Datta S.K., 2010. Management of chimera and in vitro mutagenesis for development of new flower colour/shape and chlorophyll variegated mutants in chrysanthemum. In: Floriculture, Datta S.K., Chakrabarty D. (eds.). Role of tissue culture and molecular techniques Pointer Publishers, Jaipur, 157–164.
  • Chakrabarty D., Mandal A.K.A., Datta S.K., 1999. Management of chimera through direct shoot regeneration from florets of chrysanthemum (Chrysanthemum morifolium Ramat.). J. Hort. Sci. Biotech. 74(3), 293–296.
  • Chakrabarty D., Mandal A.K.A., Datta S.K., 2000. Retrieval of new colour chrysanthemum through organogenesis from sectorial chimera. Curr. Sci. 78, 9, 1060–1061.
  • Datta S.K., Chakrabarty D., Mandal A.K.A., 2001. Gamma ray-induced genetic manipulations in flower colour and shape in Dendranthema grandiflorum and their management through tissue culture. Plant Breed. 120, 91–92.
  • Kengkarj P., Smitamana P., Fujime Y., 2008. Assessment of somaclonal variation in chrysanthemum (Dendranthema grandiflora Kitam.) using RAPD and morphological analysis. Plant Tissue Cult. Biotech. 18(2), 139–149.
  • Kozak D., 1991. Shoot regeneration from various parts of Narcissus cv. Carlton through tissue culture. Prace Instytutu Sadownictwa i Kwiaciarstwa w Skierniewicach, ser. B, Rośliny Ozdobne 16, 41–48.
  • Kumar S., Kanwar J.K., 2006. Regeneration ability of petiole, leaf and petal explants in gerbera cut flower cultures in vitro. Folia Horticult. Ann. 18/2, 57–64.
  • Lakshmi M.K., Patil S.R., Chakrapani K., Kalamkar V.B., Lende S.R., 2006. Studies on callus induction and differentiation in chrysanthemum (Dendranthema grandiflora). J. Soil. Crops 16(2), 324–330.
  • Lu Ch.Y., Nugent G., Wardley T., 1990. Efficient, direct plant regeneration from stem segments of chrysanthemum (Chrysanthemum morifolium Ramat. cv. Royal Purple). Plant Cell Rep. 8, 733–736.
  • Maggon R., Singh B.D., 1995. Promotion of adventitious bud regeneration by ABA in combination with BAP in epicotyl and hypocotyls explants of sweet orange (Citrus sinensis L. Osbeck). Sci. Hortic. 63, 123–128.
  • Malaure R.S., Barclay G., Power J.B., Davey M.R., 1991a. The production of novel plants from florets of Chrysanthemum morifolium using tissue culture 1. Shoot regeneration from ray florets and somaclonal variation exhibited by the regenerated plants. J. Plant Physiol. 139, 8–13.
  • Malaure R.S., Barclay G., Power J.B., Davey M.R., 1991b. The production of novel plants from florets of Chrysanthemum morifolium using tissue culture 2. Securing natural mutations (sports). J. Plant Physiol. 139, 14–18.
  • Mandal A.K.A., Chakrabarty D., Datta S.K., 2000a. In vitro isolation of solid novel flower colour mutants from induced chimeric ray florets of chrysanthemum. Euphytica 114, 9–12.
  • Mandal A.K.A., Chakrabarty D., Datta S.K., 2000b. In vitro isolation of solid novel flower colour mutants from induced chimeric ray florets of chrysanthemum. Euphytica 114, 9–12.
  • Matsumura A., Nomizu T., Furutani N., Hayashi K., Minamiyama Y., Hase Y., 2010. Ray florets color and shape mutants induced by 12C5+ ion beam irradiation in chrysanthemum. Sci. Hortic. 123, 558–561.
  • Messeguer J., Arconada M.C., Mele E., 1993. Adventitious shoot regeneration in carnation (Dianthus caryophyllus L.). Sci. Hortic. 54, 153–163.
  • Murashige T., Skoog F., 1962. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant 15, 473–497.
  • Nahid J.S., Shyamali S., Kazumi H., 2007. High frequency shoot regeneration from petal explants of Chrysanthemum morifolium Ramat. in vitro. Pak. J. Biol. Sci. 10(19), 3356–3361.
  • Park S.H., Kim G.H., Jeong B.R., 2005. Adventitious shoot regeneration in Chrysanthemum as affected by plant growth regulators, sucrose, and dark period. J. Kor. Soc. Hort. Sci. 46(5), 335–340.
  • Park S.H., Kim G.H., Jeong B.R., 2007. Adventitious shoot regeneration from cultured petal explants of Chrysanthemum. Horticult. Environ. Biotech. 48(6), 387–392.
  • Paudyal K.P., Haq N., 2000. In vitro propagation of pummel (Citrus grandis L. Osbeck). In Vitro Cell. Dev. Biol. Plant. 36, 511–516.
  • Pierik R.L.M., 1987. In vitro culture of higher plants. Martinus Nijhoff Publishers, Dordrecht, Netherlands 69, 101, 207.
  • Stewart R.N., Dermen H., 1970. Somatic genetic analysis of the apical layers of chimeral sports in chrysanthemum by experimental production of adventitious shoots. Am. J. Bot. 57(9), 1061–1071.
  • Tilney-Bassett R.A.E., 1986. Plant chimeras. Edward Arnold, London, 19–62.
  • Vainstein A., Fisher M., Ziv M., 1992. Shoot regeneration from petals as a basis for genetic variation and transformation. Acta Hortic. 314, 39–45.
  • Watad A.A., Ahroni A., Zuker A., Shejtman H., Nissim A., Vainstein A., 1996. Adventitious shoot formation from carnation stem segments: a comparison of different culture procedures. Sci. Hortic. 65, 313–320.
  • Zalewska M., 2010. In vitro adventitious bud techniques as a tool in creation of new chrysanthemum cultivars. In: Floriculture. Role of tissue culture and molecular techniques, Datta S.K., Chakrabarty D. (eds.). Pointer Publishers, Jaipur, 196.
  • Zalewska M., Miler N., Tymoszuk A., Drzewiecka B., Winiecki J., 2010. Results of mutation breeding activity on Chrysanthemum × grandiflorum (Ramat.) Kitam. in Poland. EJPAU 13(4), 27.
  • Zalewska M., Tymoszuk A., Miler N., 2011. New chrysanthemum cultivars as a result of in vitro mutagenesis with the application of different explant types. Acta Sci. Pol., Hortorum Cultus 10(2), 109–123.
  • Zuker A., Ahroni A., Shejtman H., Vainstein A., 1997. Adventitious shoot regeneration from leaf explants of Gypsophila paniculata L. Plant Cell. Rep. 16, 775–778.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-3d51566f-e437-491b-b896-86daeea6aa1f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.