PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2014 | 63 | 2 |

Tytuł artykułu

Bacteriophages as an alternative strategy for fighting biofilm development

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The ability of microbes to form biofilms is an important element of their pathogenicity, and biofilm formation is a serious challengefor today’s medicine. Fighting the clinical complications associated with biofilm formation is very difficult and linked to a high risk of failure, especially in a time of increasing bacterial resistance to antibiotics. Bacterial species most commonly isolated from biofilms include coagulase-negative staphylococci, Staphylococcus aureus, Enterococcus faecalis, Enterococcus faecium, Escherichia coli, Proteus mirabilis, Klebsiella pneumoniae, Pseudomonas aeruginosa and Acinetobacter spp. The frequent failure of antibiotic therapy led researchers to look for alternative methods and experiment with the use of antibacterial factors with a mechanism of action different from that of antibiotics. Experimental studies with bacteriophages and mixtures thereof, expressing lytic properties against numerous biofilm-forming bacterial species showed that bacteriophages may both prevent biofilm formation and contribute to eradication of biofilm bacteria. A specific role is played here by phage depolymerases, which facilitate the degradation of extracellular polymeric substances (EPS) and thus the permeation of bacteriophages into deeper biofilm layers and lysis of the susceptible bacterial cells. Much hope is placed in genetic modifications of bacteriophages that would allow the equipping bacteriophages with the function of depolymerase synthesis. The use of phage cocktails prevents the development of phage-resistant bacteria.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

63

Numer

2

Opis fizyczny

p.137-145,ref.

Twórcy

autor
  • Military Institute of Hygiene and Epidemiology, Biological Threat Identification and Countermeasure Centre, Lubelska 2, 24-100 Pulawy, Poland
autor
  • Military Institute of Hygiene and Epidemiology, Biological Threat Identification and Countermeasure Centre, Lubelska 2, 24-100 Pulawy, Poland
autor
  • Military Institute of Hygiene and Epidemiology, Biological Threat Identification and Countermeasure Centre, Lubelska 2, 24-100 Pulawy, Poland
autor
  • Military Institute of Hygiene and Epidemiology, Biological Threat Identification and Countermeasure Centre, Lubelska 2, 24-100 Pulawy, Poland
autor
  • Department of Pharmaceutical Microbiology, Medical University of Lublin, Lublin, Poland

Bibliografia

  • Ackermann H.W. 2006. Classification of bacteriophages. The Bacteriophages, Ed. Calendar R, Oxford University Press, ISBN 0-19-514850-9, New York, USA, pp. 8–16
  • Ahiwale S., N. Tamboli, K. Thorat, R. Kulkarni, H.W. Ackermann and B. Kapadnis. 2011. In vitro management of hospital Pseudomonas aeruginosa biofilm using indigenous T7-like lytic phage. Curr. Microbiol. 62: 335–340.
  • Ashelford K.E., M.J. Day and J.C. Fry. 2003. Elevated abundance of bacteriophage infecting bacteria in soil. Appl. Environ. Microbiol. 69: 285–289.
  • Azeredo J. and I.W. Sutherland. 2008. The use of phages for the removal of infectious biofilms. Curr. Pharm. Biotechnol. 9: 261–266.
  • Barrow P., M. Lovell and A.Jr. Berchieri. 1998. Use of lytic bacteriophage for control of experimental Escherichia coli septicemia and meningitis in chickens and calves. Clin. Diagn. Lab. Immunol. 5: 294–298.
  • Bedi M.S., V. Verma and S. Chibber. 2009. Amoxicillin and specific bacteriophage can be used together for eradication of biofilm of Klebsiella pneumoniae B5055. World J. Microbiol. Biotechnol. 25: 1145–1151.
  • Biswas B., S. Adhya, P. Washart, B. Paul, A.N. Trostel, B. Powell, R. Carlton and C.R. Merril. 2002. Bacteriophage therapy rescues mice bacteremic from a clinical isolate of vancomycin resistant Enterococcus faecium. Infect. Immun. 70: 204–210.
  • Briandet R., P. Lacroix-Gueu, M. Renault, S. Lecart, T. Meylheuc, E. Bidnenko, K. Steenkeste, M.-N. Bellon-Fontaine and M.-P. Fontaine-Aupart. 2008. Fluorescence correlation spectroscopy to study diffusion and reaction of bacteriophages inside biofilms. Appl. Environ. Microbiol. 74: 2135–2143.
  • Brzozowska E., J. Bazan and A. Gamian. 2011. Funkcje białek bakteriofagowych. Postepy Hig. Med. Dosw. 65: 167–176.
  • Cerca N., R. Oliveira and J. Azeredo. 2007. Susceptibility of Staphylococcus epidermidis planktonic cells and biofilms to the lytic action of staphylococcus bacteriophage K. Lett. Appl. Microbiol. 45: 313–317.
  • Clark J.R. and J.B. March. 2006. Bacteriophages and biotechnology: vaccines, gene therapy and antibacterials. Trends Biotechnol. 24: 212–218.
  • Corbin B.D., R.J.C. McLean and G.M. Aron. 2001. Bacteriophage T4 multiplication in a glucose-limited Escherichia coli biofilm. Can. J. Microbiol. 47: 680–684.
  • Cornelissen A., Ceyssens P.J., T’Syen J., Van Praet H., Noben J.P.,Shaburova O.V., Krylov V.N., Volckaert G. and Lavigne R. 2011. The T7-Related Pseudomonas putida Phage ϕ15 Displays Virion-Associated Biofilm Degradation Properties. PLoS One 6: e18597. doi: 10.1371/journal.pone.0018597
  • Costerton J.W. 2007. The biofilm primer. Berlin Heidelberg, Sprin-ger-Verlag.
  • Costerton J.W., P.S. Stewart and E.P. Greenberg. 1999. Bacterial biofilms: a common cause of persistent infections. Science 284: 1318–1322.
  • Curtin J.J. and R.M. Donlan. 2006. Using bacteriophages to reduce formation of catheter associated biofilms by Staphylococcus epidermidis. Antimicrob. Agents Chemother. 50: 1268–1275.
  • Dąbrowska K., K. Świtala-Jeleń, A. Opolski, B. Weber-Dąbrowska and A. Górski. 2005. Bacteriophage penetration in vertebrates. J. Appl. Microbiol. 98: 7–13.
  • Davey M.E. and G.A. O’Toole. 2000. Microbial biofilms: from ecology to molecular genetics. Microbiol. Mol. Biol. Rev. 64: 847–867.
  • Donlan R.M. 2005. New approaches for the characterization of prosthetic joint biofilms. Clin. Orthop. Relat. Resl. 437: 12–19.
  • Donlan R.M. 2009. Preventing biofilms of clinically relevant organisms using bacteriophage. Trends Microbiol. 17: 66–72.
  • Donlan R.M. and J.W. Costerton. 2002. Biofilms: survival mechanisms of clinically relevant microorganisms. Clin. Microbiol. Rev. 15: 167–193.
  • Doolittle M.M., J.J. Cooney and D.E. Caldwell. 1995. Lytic infection of Escherichia coli biofilms by bacteriophage-T4. Can. J. Microbiol. 41: 12–18.
  • Doolittle M.M., J.J. Cooney and D.E. Caldwell. 1996. Tracing the interaction of bacteriophage with bacterial biofilms using fluorescent and chromogenic probes. J. Ind. Microbiol. 16: 331–341.
  • Dzuliashvili M., K. Gabitashvili, A. Golidjashvili, N. Hoyle andK. Gachechiladze. 2007. Study of therapeutic potential of the experimental pseudomonas bacteriophage preparation. Georgian Med. News 147: 81–8.
  • Fox J. 2000. Phage treatments yield healthier tomato, pepper plants. ASM News 66: 455–456.
  • Fu W., T. Forster, O. Mayer, J.J. Curtin, S.M. Lehman andR.M. Donlan. 2010. Bacteriophage cocktail for the prevention of biofilm formation by Pseudomonas aeruginosa on catheters inan in vitro model system. Antimicrob. Agents Chemother. 54: 397–404.
  • Furuse K. 1987. Distribution of coliphages in the general environment: general considerations. In: Phage ecology, pp. 87–124. New York, N.Y.: John Wiley & Sons.
  • Glonti T., N. Chanishvili and P.W. Taylor. 2010. Bacteriophage-derived enzyme that depolymerizes the alginic acid capsule associated with cystic fibrosis isolates of Pseudomonas aeruginosa. J. Appl. Microbiol. 108: 695–702.
  • Goldman G., J. Starosvetskyand and R. Armon. 2009. Inhibition of biofilm formation on UF membrane by use of specific bacteriophages. J. Memb. Sci. 342: 145–152.
  • Hadas H., M. Einav, I. Fishov and A. Zaritsky. 1997. Bacteriophage T4 development depends on the physiology of its host Escherichia coli. Microbiology 143: 179–185.
  • Hanlon G.W. 2007. Bacteriophages: an appraisal of their role in the treatment of bacterial infections. Int. J. Antimicrob. Agents 30: 118–128.
  • Hanlon G.W., S.P. Denyer, C.J. Olliff and L.J. Ibrahim. 2001. Reduction of exopolysaccharide viscosity as an aid to bacteriophage penetration through Pseudomonas aeruginosa biofilms. Appl. Environ. Microbiol. 67: 2746–2753.
  • Hibma A.M., S.A. Jassim and M.W. Griffiths. 1997. Infection and removal of L-forms of Listeria monocytogenes with bred bacteriophage. Int. J. Food Microbiol. 34: 197–207.
  • Hughes K.A, I.W. Sutherland, J. Clark and M.V. Jones. 1998a. Bacteriophage and associated polysaccharide depolymerases – novel tools for study of bacterial biofilms. J. Appl. Microbiol. 85: 583–590.
  • Hughes K.A., I.W. Sutherland, J. Clark and M.V. Jones. 1998b. Biofilm susceptibility to bacteriophage attack: the role of phage-borne polysaccharide depolymerase. Microbiology 144: 3039–3047.
  • Kay M.K., T.C. Erwin, R.J. McLean and G.M. Aron. 2011. Bacteriophage ecology in Escherichia coli and Pseudomonas aeruginosa mixed-biofilm communities. Appl. Environ. Microbiol. 77: 821–829.
  • Lu T.K. and J.J. Collins. 2007. Dispersing biofilms with engineered enzymatic bacteriophage. Proc. Natl. Acad. Sci. USA 104: 11197–11202.
  • Matsuzaki S., M. Rashel, J. Uchiyama, S. Sakurai, T. Ujihara, M. Kuroda, M. Ikeuchi, T. Tani, M. Fujieda, H. Wakiguchi and S. Imai. 2005. Bacteriophage therapy: a revitalized therapy against bacterial infectious diseases. J. Infect. Chemother. 11: 211–219.
  • McVay C.S., M. Velásquez and J.A. Fralick. 2007. Phage therapy of Pseudomonas aeruginosa infection in a mouse burn wound model. Antimicrob. Agents Chemother. 51: 1934–1938.
  • Mushtaq N., M.B. Redpath, J.P. Luzio and P.W. Taylor. 2005. Treatment of experimental Escherichia coli infection with recombinant bacteriophage-derived capsule depolymerase. J. Antimicrob. Chemother. 56:160–165.
  • Nelson D., L. Loomis and V.A. Fischetti. 2001. Prevention and elimination of upper respiratory colonization of mice by group A streptococci by using a bacteriophage lytic enzyme. Proc. Natl. Acad. Sci. USA 98: 4107–4112.
  • O’Flaherty S., A. Coffey, W. Meaney, G.F. Fitzgerald and R.P. Ross. 2005. The recombinant phage lysin LysK has a broad spectrum of lytic activity against clinically relevant staphylococci, including methicillin-resistant Staphylococcus aureus. J. Bacteriol. 187: 7161–7164.
  • Pires D., S. Sillankorva, A. Faustino and J. Azeredo. 2011. Use of newly isolated phages for control of Pseudomonas aeruginosa PAO1 and ATCC 10145 biofilms. Res. Microbiol. 162: 798–806.
  • Rohwer F. and R. Edwards. 2002. The Phage Proteomic Tree: a genome-based taxonomy for phage. J. Bacteriol. 184: 4529–4535.
  • Różalska B. 2008. Biofilmy drobnoustrojów i ich rola w zakażeniach. Sepsis 1: 49– 53.
  • Różalska B., E. Walecka and B. Sadowska. 2010. Wykrywanie biofilmów stanowiących problemy medyczne i perspektywy ich eradykacji. Zakażenia 10: 13–21.
  • Sass P. and G. Bierbaum. 2006. Lytic activity of recombinant bacteriophage phi11 and phi12 endolysins on whole cells and biofilms of Staphylococcus aureus. Appl. Environ. Microbiol. 73: 347–352.
  • Schuch R., D. Nelson and V.A. Fischetti. 2002. A bacteriolytic agent that detects and kills Bacillus anthracis. Nature 418: 884–889.
  • Sharma M., J.H. Ryu and L.R. Beuchat. 2005. Inactivation of Escherichia coli O157:H7 in biofilm on stainless steel by treatment with an alkaline cleaner and a bacteriophage. J. App.l Microbiol. 99: 449–459.
  • Sharp R. 2001. Bacteriophages: biology and history. J. Chem. Technol. Biotechnol. 76: 667–672.
  • Sillankorva S., P. Neubauer and J. Azeredo. 2010. Phage control of dual species biofilms of Pseudomonas fluorescens and Staphylococcus lentus. Biofouling 26: 567–575.
  • Sillankorva S., R. Oliveira, M.J. Vieira and J. Azeredo. 2008. Real-time quantification of Pseudomonas fluorescens cell removal from glass surfaces due to bacteriophage phiS1 application. J. Appl. Microbiol. 105: 196–202.
  • Sillankorva S., R. Oliveira, M.J. Vieira, I.W. Sutherland andJ. Azeredo. 2004. Bacteriophage phiS1 infection of Pseudomonas fluorescens planktonic cells versus biofilms. Biofouling 20: 133–138.
  • Siringan P., P.L. Connerton, R.J. Payne and I.F. Connerton. 2011. Bacteriophage-mediated dispersal of Campylobacter jejuni biofilms. Appl. Environ. Microbiol. 77: 3320–3326.
  • Skurnik M. and E. Strauch. 2006. Phage therapy: facts and fiction. Int. J. Med. Microbiol. 296: 5–14.
  • Son, J.S., S.J. Lee, S.Y. Jun, S.J. Yoon, S.H. Kang, H.R. Paik,J.O. Kang and Y.J. Choi. 2010. Antibacterial and biofilm removal activity of a podoviridae Staphylococcus aureus bacteriophage SAP-2 and a derived recombinant cell-wall-degrading enzyme. Appl. Microbiol. Biotechnol. 86: 1439–1449.
  • Soni K.A. and R. Nannapaneni. 2010. Removal of Listeria monocytogenes biofilms with bacteriophage P100. J. Food Prot. 73, 1519–1524.
  • Sulakvelidze A., Z. Alavidze and J.G. Jr. Morris. 2001. Bacteriophage Therapy. Antimicrob. Agents Chemother. 45: 649–659.
  • Sutherland I.W., K.A. Hughes, L.C. Skillman and K. Tait. 2004. The interaction of phage and biofilms. FEMS Microbiol. Lett. 232: 1–6.
  • Tait K., L.C. Skillman and I.W. Sutherland. 2002. The efficacy of bacteriophage as a method of biofilm eradication. Biofouling 18: 305–311.
  • Tenover F.C. 2001. Development and spread of bacterial resistance to antimicrobial agents: an overview. Clin. Infect. Dis. 33: 108–115.
  • Trafny E.A. 2008. Rola biofilmów w patogenezie zakażeń człowieka. Postępy Microbiol. 47: 353–357.
  • Wood H.L., S.R. Holden and R. Bayston. 2001. Susceptibility of Staphylococcus epidermidis biofilm in CSF shunts to bacteriophage attack. Eur. J. Pediatr. Surg. 11: 556–557.
  • Zobell C.E. 1943. The effect of solid surfaces upon bacterial activity. J. Bacteriol. 46: 39–56.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-3ce97b10-3b84-42ce-8250-382ce6303f95
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.