PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2019 | 28 | 4 |

Tytuł artykułu

Genetic diversity among some Asparagus species using rDNA ITS, cpDNA trnL intron sequence and screening for antioxidant activity

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Three species of genus Asparagus native to Lake Van Basin of Turkey were analyzed using internal transcribed spacer (ITS) and cpDNA trnL intron sequence. Furthermore, these species were screened for their antioxidant activity and total phenolic and flavonoid contents. Phylogenetic analysis based on ITS data revealed two clades: the first clade consisted of Asparagus persicus and Asparagus officinalis, and clade II consisted of Asparagus palaestinus. Similarly, phylogenetic analysis using trnL intron sequence revealed two clades. In term of total phenolic content and total flavonoid content, the highest value were measured for acetone extract of Asparagus persicus sample No. 2 and Asparagus persicus sample No. 6, respectively. The highest antioxidant activity using FRAP assay was found for Asparagus persicus sample No. 3. We concluded that these species could be useful for increasing genetic diversity among cultivated species and for breeding.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

28

Numer

4

Opis fizyczny

p.2049-2055,fig.,ref.

Twórcy

autor
  • Department of Horticulture, Faculty of Agriculture, Siirt University, Siirt, Turkey
autor
  • Department of Horticulture, Faculty of Agriculture, Siirt University, Siirt, Turkey
autor
  • Department of Horticulture, Faculty of Agriculture, Van Yuzuncu Yil University, Van, Turkey
autor
  • Department of Biology, Faculty of Arts and Science, Siirt University, Siirt, Turkey
autor
  • Agricultural Biotechnology, Faculty of Agriculture, Siirt University, Siirt, Turkey

Bibliografia

  • 1. NAKAYAMA H., YAMAGUCHI T., TSUKAYA H. Acquisition and diversification of cladodes: leaf-like organs in the genus Asparagus. The Plant Cell, 24 (3), 929, 2012.
  • 2. CLIFFORD H., CONRAN J. 2. Asparagus, 3. Protasparagus, 4. Myrsiphyllum. Flora of Australia. Australian Government Publishing Service, Canberra, 159, 1987.
  • 3. KUBOTA S., KONNO I., KANNO A. Molecular phylogeny of the genus Asparagus (Asparagaceae) explains interspecific crossability between the garden asparagus (A. officinalis) and other Asparagus species. Theoretical and Applied Genetics, 124 (2), 345, 2012.
  • 4. RICCARDI P., LEEBENS-MACK J., CIFARELLI R., FALAVIGNA A., SUNSERI F., AGROBIOS M. EST libraries development in Asparagus officinalis for SNPs discovery. Acta Hort (ISHS), 950, 127, 2012.
  • 5. SARABI B., HASSANDOKHT M.R., HASSANI M.E., MASOUMI T.R., RICH T. Evaluation of genetic diversity among some Iranian wild asparagus populations using morphological characteristics and RAPD markers. Scientia horticulturae, 126 (1), 1, 2010.
  • 6. GOVINDARAJ M., VETRIVENTHAN M., SRINIVASAN M. Importance of genetic diversity assessment in crop plants and its recent advances: an overview of its analytical perspectives. Genetics research international, 2015, 2015.
  • 7. RAY S., MADHUMITA J., SANDIP M. Phylogenetic relationship among six economically important species of Asparagus utilizing RAPD, ISSR and isozyme polymorphism. Biores. Bull, 3, 153, 2010.
  • 8. KEHIE M., KUMARIA S., DEVI K.S., TANDON P. Genetic diversity and molecular evolution of Naga King Chili inferred from internal transcribed spacer sequence of nuclear ribosomal DNA. Meta Gene, 7, 56, 2016.
  • 9. STECH M., QUANDT D. 20,000 species and five key markers: the status of molecular bryophyte phylogenetics. Phytotaxa, 9 (1), 196, 2014.
  • 10. SAHA P.S., RAY S., SENGUPTA M., JHA S. Molecular phylogenetic studies based on rDNA ITS, cpDNA trnL intron sequence and cladode characteristics in nine Protasparagus taxa. Protoplasma, 252 (4), 1121, 2015.
  • 11. KUNWAR A., PRIYADARSINI K. Free radicals, oxidative stress and importance of antioxidants in human health. Journal of Medical & Allied Sciences, 1 (2), 53, 2011.
  • 12. SHARMA P., JHA A.B., DUBEY R.S., PESSARAKLI M. Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. Journal of botany, 2012, 2012.
  • 13. SARMA A.D., MALLICK A.R., GHOSH A. Free radicals and their role in different clinical conditions: an overview. International Journal of Pharma Sciences and Research, 1 (3), 185, 2010.
  • 14. ACHARYA S., ACHARYA N., BHANGALE J., SHAH S., PANDYA S. Antioxidant and hepatoprotective action of Asparagus racemosus Willd. root extracts. 2012.
  • 15. WANG J., LIU Y., ZHAO J., ZHANG W., PANG X. Saponins extracted from by-product of Asparagus officinalis L. suppress tumour cell migration and invasion through targeting Rho GTPase signalling pathway. Journal of the Science of Food and Agriculture, 93 (6), 1492, 2013.
  • 16. LEE J.W., LEE J.H., YU I.H., GORINSTEIN S., BAE J.H., KU Y.G. Bioactive compounds, antioxidant and binding activities and spear yield of Asparagus officinalis L. Plant foods for human nutrition, 69 (2), 175, 2014.
  • 17. JIMÉNEZ-SÁNCHEZ C., LOZANO-SÁNCHEZ J., RODRÍGUEZ-PÉREZ C., SEGURA-CARRETERO A., FERNÁNDEZ-GUTIÉRREZ A. Comprehensive, untargeted, and qualitative RP-HPLC-ESI-QTOF/MS2 metabolite profiling of green asparagus (Asparagus officinalis). Journal of Food Composition and Analysis, 46, 78, 2016.
  • 18. HAFIZUR R.M., KABIR N., CHISHTI S. Asparagus officinalis extract controls blood glucose by improving insulin secretion and β-cell function in streptozotocininduced type 2 diabetic rats. British Journal of Nutrition, 108 (09), 1586, 2012.
  • 19. FAN R., YUAN F., WANG N., GAO Y., HUANG Y. Extraction and analysis of antioxidant compounds from the residues of Asparagus officinalis L. Journal of food science and technology, 52 (5), 2690, 2015.
  • 20. FUENTES-ALVENTOSA J.M., JARAMILLOCARMONA S., RODRÍGUEZ-GUTIÉRREZ G., RODRÍGUEZ-ARCOS R., FERNÁNDEZ-BOLAÑOS J., GUILLÉN-BEJARANO R., ESPEJO-CALVO J., JIMÉNEZ-ARAUJO A. Effect of the extraction method on phytochemical composition and antioxidant activity ofhigh dietary fibre powders obtained from asparagus byproducts. Food Chemistry, 116 (2), 484, 2009.
  • 21. DOYLE J.J. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem bull, 19, 11, 1987.
  • 22. KARACA M., İNCE A.G., ELMASULU S.Y., ONUS A.N., TURGUT K. Coisolation of genomic and organelle DNAs from 15 genera and 31 species of plants. Analytical biochemistry, 343 (2), 353, 2005.
  • 23. WHITE T.J., BRUNS T., LEE S., TAYLOR J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. PCR protocols: a guide to methods and applications, 18 (1), 315, 1990.
  • 24. TABERLET P., GIELLY L., PAUTOU G., BOUVET J. Universal primers for amplification of three non-coding regions of chloroplast DNA. Plant molecular biology, 17 (5), 1105, 1991.
  • 25. SLINKARD K., SINGLETON V.L. Total phenol analysis: automation and comparison with manual methods. American Journal of Enology and Viticulture, 28 (1), 49, 1977.
  • 26. ZENGIN G., UYSAL A., GUNES E., AKTUMSEK A. Survey of phytochemical composition and biological effects of three extracts from a wild plant (Cotoneaster nummularia Fisch. et Mey.): a potential source for functional food ingredients and drug formulations. PloS one, 9 (11), e113527, 2014.
  • 27. BENZIE I.F., STRAIN J. [2] Ferric reducing/antioxidant power assay: Direct measure of total antioxidant activity of biological fluids and modified version for simultaneous measurement of total antioxidant power and ascorbic acid concentration. Methods in enzymology, 299, 15, 1999.
  • 28. OGUNDIPE O.T., CHASE M. Phylogenetic analyses of Amaranthaceae based on matK DNA sequence data with emphasis on West African species. Turkish Journal of Botany, 33 (3), 153, 2009.
  • 29. EDGER P.P., TANG M., BIRD K.A., MAYFIELD D.R., CONANT G., MUMMENHOFF K., KOCH M.A., PIRES J.C. Secondary structure analyses of the nuclear rRNA internal transcribed spacers and assessment of its phylogenetic utility across the Brassicaceae (Mustards). PLoS One, 9 (7), e101341, 2014.
  • 30. GIELLY L., TABERLET P. A phylogeny of the European gentians inferred from chloroplast trnL (UAA) intron sequences. Botanical Journal of the Linnean Society, 120 (1), 57, 1996.
  • 31. MA Y., ZHANG J., LIU J. TrnH-psbA sequence analyses of asparagus cochinchinensis from different geographical origin in China. BIO Web of Conferences. EDP Sciences. 03001, 2017.
  • 32. TRIPATHI A.M., TYAGI A., KUMAR A., SINGH A., SINGH S., CHAUDHARY L.B., ROY S. The internal transcribed spacer (ITS) region and trnhH-psbA are suitable candidate loci for DNA barcoding of tropical tree species of India. PloS one, 8 (2), e57934, 2013.
  • 33. GROUP C.P.B., LI D.-Z., GAO L.-M., LI H.-T., WANG H., GE X.-J., LIU J.-Q., CHEN Z.-D., ZHOU S.-L., CHEN S.-L. Comparative analysis of a large dataset indicates that internal transcribed spacer (ITS) should be incorporated into the core barcode for seed plants. Proceedings of the National Academy of Sciences, 108 (49), 19641, 2011.
  • 34. WISSEMANN V. Molecular evidence for allopolyploid origin of the Rosa canina-complex (Rosaceae, Rosoideae). Journal of applied botany, 76 (5-6), 176, 2002.
  • 35. BAILEY C.D., CARR T.G., HARRIS S.A., HUGHES C.E. Characterization of angiosperm nrDNA polymorphism, paralogy, and pseudogenes. Molecular phylogenetics and evolution, 29 (3), 435-455, 2003.
  • 36. NACZK M., SHAHIDI F. Phenolics in cereals, fruits and vegetables: Occurrence, extraction and analysis. Journal of pharmaceutical and biomedical analysis, 41 (5), 1523, 2006.
  • 37. LÓPEZ A., RICO M., RIVERO A., DE TANGIL M.S. The effects of solvents on the phenolic contents and antioxidant activity of Stypocaulon scoparium algae extracts. Food Chemistry, 125 (3), 1104, 2011.
  • 38. KAUR S., MONDAL P. Study of total phenolic and flavonoid content, antioxidant activity and antimicrobial properties of medicinal plants. J Microbiol Exp, 1 (1), 00005, 2014.
  • 39. KALLITHRAKA S., GARCIA-VIGUERA C., BRIDLE P., BAKKER J. Survey of solvents for the extraction of grape seed phenolics. Phytochemical Analysis, 6 (5), 265, 1995.
  • 40. MORALES P., CARVALHO A.M., SÁNCHEZ-MATA M.C., CÁMARA M., MOLINA M., FERREIRA I.C. Tocopherol composition and antioxidant activity of Spanish wild vegetables. Genetic Resources and Crop Evolution, 59 (5), 851, 2012.
  • 41. MOHAMMEDI Z., ATIK F. Impact of solvent extraction type on total polyphenols content and biological activity from Tamarix aphylla (L.) Karst. 2011.
  • 42. KU Y.G., KANG D.H., LEE C.K., LEE S.Y., RYU C.S., KIM D.E., POLOVKA M., NAMIEŚNIK J., GORINSTEIN S. Influence of different cultivation systems on bioactivity of asparagus. Food chemistry, 244, 349, 2018.
  • 43. RODRÍGUEZ R., JARAMILLO S., RODRÍGUEZ G., ESPEJO J.A., GUILLÉN R., FERNÁNDEZ-BOLAÑOS J., HEREDIA A., JIMÉNEZ A. Antioxidant activity of ethanolic extracts from several asparagus cultivars. Journal of agricultural and food chemistry, 53 (13), 5212, 2005.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-3cb4686f-8bed-4154-a9ea-d1cce597353f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.