PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2016 | 21 | 2 |

Tytuł artykułu

Effect of zinc, iron and manganese fertilization on concentrations of these metals in the stem and leaves of soybean and on the chlorophyll content in leaves during the reproductive development stages

Autorzy

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
In order to investigate the effect of zinc, iron and manganese fertilization on Zn, Fe and Mn concentrations in the stem and leaves and on the chlorophyll content in leaves of soybean at different reproductive growth stages, two experiments were conducted on a research field of the Islamic Azad University of Kermanshah, Iran, during the 2010 and 2011 growing seasons. The experimental design consisted of a factorial experiment based on the randomized complete block method with three replicates. The treatments included three levels of Zn (0, 20 and 40 kg ha-1), Fe (0, 25 and 50 kg ha-1), and Mn (0, 20 and 40 kg ha-1), all applied to soil. At 30, 60, 90 and 120 days after sowing (DAS), the SPAD readings were done on five leaves from each experimental plot for all replicates. Five plants were randomly selected from each plot at the flowering, pod setting, seed filling and maturity stages. Samples washed with distilled water were dried, weighed and incinerated at 550°C. Finally, the Zn, Fe and Mn concentrations were determined by Atomic Absorption Spectrometry. The results indicated that zinc application had significantly affected Zn, Fe and Mn concentrations in soybean stems at all the sampling times except for the soybean stem Mn concentration at the maturity stage. In contrast, the concentration of Mn at seed filling was unaffected by iron fertilization. Also, the maximum Fe concentration in soybean stems resulting from zinc application was achieved in Zn20 treatment. The highest Zn and Mn concentrations in leaves were recorded when iron was applied in smaller amounts. Furthermore, zinc, iron and manganese applications had significant effects on the leaf chlorophyll concentration during all the growth stages of soybean plants. In addition, increased iron and manganese fertilization raised the soybean leaf chlorophyll concentrations in all the samples. The maximum chlorophyll concentration in soybean leaves at 60 DAS was recorded in Zn20Fe50, Zn20Mn40 and Fe50Mn40 treatments (34.7, 34.0 and 35.2, respectively).

Wydawca

-

Rocznik

Tom

21

Numer

2

Opis fizyczny

p.395-412,fig.,ref.

Twórcy

autor
  • Department of Agronomy and Plant Breeding, Kermanshah Branch, Islamic Azad University, Kermanshah, Iran

Bibliografia

  • Adams M.l., Noevell W.A., Philpot W.D., Peveely J.H. 2000. Spectral detection of micronutrient deficiency in Bragg soybean. Agron J., 92: 261-268.
  • Ai-Qing Z., Qiong-Li B., Xiao-Hong T., Xin-Chun L., Gale W.J. 2011. Combined effect of iron and zinc on micronutrient levels in wheat (Triticum aestivum L.). J. Environ. Biol., 32: 235-239.
  • Alams., Kamei S., Kawai S. 2001. Amelioration of manganese toxicity in barley with iron. J. Plant Nutr., 24: 1421-1433.
  • ALLOWAY B.J. 2004. Zinc in soils and crop nutrition. Brussels, Belgium, International Zinc Association.
  • Bonnet M., Camaees O., Veisseire P. 2000. Effects of zinc and influence of Acremonium lolii on growth parameters, chlorophyll a fluorescence and antioxidant enzyme activities of ryegrass (Lolium perenne L. cv Apolle). J Exp Bot., 51: 945-953.
  • Bonneville M.C., Fyles J.W. 2006. Assessing Variations in SPAD-502 Chlorophyll meter measurements and their relationships with nutrient content of trembling aspen foliage. Com-mun Soil Sci Plant Anal., 37: 525-539.
  • Chen Y., Shi J., Tian G., Zheng S., Qi Lin Q. 2004. Fe deficiency induces Cu uptake and accumulation in Commelina communis. Plant Sci., 166: 1371-1377.
  • Cui Y.D., Wang Q. 2005. Interaction effect of zinc and elemental sulfur on their uptake by spring wheat. J Plant Nutr., 28: 639-649.
  • Dos Santos E.F., Zanchim B.J., De Campos A.G., Gaeeone R.F., Junioe J.L.2013. Photosynthesis rate, chlorophyll content and initial development of physic nut without micronutrient fertilization. R. Bras. Ci. Solo., 37: 1334-1342.
  • Fageria N.K. 2000. Adequate and toxic levels of zinc for rice, common bean, corn, soybean and wheat production in Cerrado soil. Rev. Bras. Eng. Agri. Ambien., 4: 390-395.
  • Fehe W.R., Caviness C.E. 1977. Stages of soybean development, Spec, Rep, 80, Iowa State Univ, Ames.
  • Ghasemi-Fasaei E., Ronaghi A., Maftoun M, Karimian N., Soltanpoue P.N. 2003. Influence of Fe -EDDHA on iron- manganese interaction in soybean genotypes in a calcareous soil. J. Plant Nutr., 26: 1815-1823.
  • Gholamalizadeh A.A., Karimian N., Abtahi A., Assad M.T., Eman Y.1995. Growth and manganese uptake of soybean in highly calcareous soils as affected by native and applied manganese and predicted by nine different extractants. Commun. Soil Sci. Plant Anal., 26: 1441-1454.
  • Girma K., Maetin K.L., Andeeson R.H., Aenall D.B., Beixey K.D., Casillas M.A., Chung B., Dobey B.C., Kamenidou S.K., Kariuki S.K., Katsalirou E.E., Morris J.C., Moss J.Q., Rohia C.T., Sudbury B.J., Tubana B.S., Raun W.R. 2006. Mid-season prediction of wheat-grain yield potential using plant, soil, and sensor measurements. J Plant Nutr., 29(5): 873-897.
  • Gupta U.C., Kening W.U., Siyuan L. 2008. Micronutrients in soils, crops, and livestock. Earth Sci Front., 15(5): 110-125.
  • Hansch E., Mendel R.R. 2009. Physiological functions of mineral micronutrients (Cu, Zn, Mn, Fe, Ni, Mo, B, Cl). Curr Opin Plant Biol., 12: 259-266.
  • Heitholt J.J., Sloan J.J., Mackown C.T. 2002. Copper, manganese and zinc fertilization effects on growth of soybean on a calcareous soil. J Plant Nutr., 25(8): 1727-1740.
  • Heitholt J.J., Sloan J.J., Mackown C.T., Cabeeea R.I. 2003. Soybean growth on calcareous soil as affected by three iron sources. J. Plant Nutr., 26(4): 935-948.
  • Hodgson A.S., Holland J.F., Eogees E.F. 1992. Iron deficiency depresses growth of furrow irrigated soybean and pigeon pea on Vertisols on Northern N.S. W. Aust. Agric Res., 43: 635-644.
  • Hu-Lin H., You-Zhang W., Xiaoe.Y., Ying F., Chun-Yong W. 2007. Effects of different nitrogen fertilizer levels on Fe, Mn, Cu and Zn concentrations in shoot and grain quality in rice (Oryza sativa). Rice Sci., 14(4): 289-294.
  • Izaguirre-Mayoral M.L., Sinclaie T. 2009. Irradiance regulates genotype-specific responses of Rhizobium nodulated soybean to increasing iron and two manganese concentrations in solution culture. J Plant Physiol., 166: 807-818.
  • Kacar B. 1984. Plant nutrition practice guide. Ankara Univ, Agricultural Fac. Pub: 900, Practice Guides, 214, Ankara, Turkey.
  • Kaya, С., Higgs D., Burton A. 1999. Foliar application of iron as a remedy for zinc toxic tomato plants. J. Plant Nutr., 22: 1829-1837.
  • Khudsar T., Arshi A., Siddiqi T.O., Mahmooduzzafar M.I. 2008. Zinc-induced changes in growth characters, foliar properties, and Zn-accumulation capacity of pigeon pea at different stages of plant growth. J Plant Nutr., 31(2): 281-306. DOI: 10.1080/01904160701853894
  • Mandal B., Hazra G.C., Mandal L.N. 2000. Soil management influence on zinc desorption for rice and maize nutrition. Soil Sci. Soc. Am. J., 64: 1699-1705.
  • Naiema M.S. 2008. Effect of foliar application of liquid organic fertilizer (Aminofert), some micro nutrients and gibberellins on leaf mineral content, fruit set, yield fruit set, yield and fruit quality of Le Conte pear trees. Alex. J. Agric. Res., 53(1): 63-71.
  • Neves O.S.C., De carvalho J.G., Martins F.A.D. 2005. Use of SPAD-502 in the evaluation of chlorophyll contents and nutritional status of herbaceous cotton to nitrogen, sulphur, iron and manganese. Pesqu Agropecu Bras., 40(5): 517-521.
  • Obaid E.A., Al-Hadethi M.E.A.2013. Effect of foliar application with manganese andzinc on pomegranate growth, yield and fruit quality. J Hortic Sci Ornamental Plants, 5(1): 41-45.
  • Parvizi Y., Ronaghi A., Maftüun M., Karimian N.A. 2004. Growth, nutrient status, and chlorophyll meter readings in wheat as affected by nitrogen and manganese. Commun Soil Sci Plant Anal., 35: 1387-1399.
  • Pushnik J.C., Miller G.W. 1984. Iron regulation of chloroplast photosynthetic function: Mediation of PS I development. J. Plant Nutr., 12: 407-421.
  • Rombola A.D., Gogorcena Y., Larbi A., Morales F., Balde е., Marangoni В., Tagliavini M., Abadia J. 2005. Iron deficiency-induced changes in carbon fixation and leaf elemental composition of sugar beet (Beta vulgaris) plants. Plant Soil, 271: 39-45.
  • Ronaghi A., Ghasemi-Fasaei R. 2008. Field evaluations of yield, iron-manganese relationship, and chlorophyll meter readings in soybean genotypes as affected by iron-ethylenediamine di-o-hydroxyphenylacetic acid in a calcareous soil. J Plant Nutr., 31: 81-89. DOI: 10.1080/01904160701741925
  • San Z.F. 2006. Trace elements and human health. Stud Trace Elem. Health, 23(3): 66-67. (in Chinese)
  • Sharma R.K., Agrawal M. 2006. Single and combined effects of cadmium and zinc on carrots: Uptake and bioaccumulation. J. Plant Nutr., 29: 1791-1804.
  • Spiller S.C., Castelfranco A.M., Castelfranco P.A. 1982. Effects of iron and oxygen on chlorophyll biosynthesis: I. In vivo observations on iron and oxygen-deficient plants. Plant Physiol., 69: 107-111.
  • Tsui K.H., Chang P.L., Juang H.H. 2006. Manganese antagonizes iron blocking mitochondrial aconitase expression in human prostate carcinoma cells. Asian J Androl., 8(3): 307-315.
  • Welch R.M., Graham R.D. 2004. Breeding for micronutrients in staple food crops from a human nutrition perspective. J. Exp Bot., 55(396): 353-364.
  • Wiersma J.V. 2005. High rates of Fe-EDDHA and seed iron concentration suggest partial solutions to iron deficiency in soybeans. Agron. J., 97: 924—934.
  • Yamamato A., Nakamura T., Adu-Gyamfi J.J., Saigusa M. 2002. Relationship between chlorophyll content in leaves of sorghum and pigeonpea determined by extraction method and by chlorophyll meter (SPAD-502). J Plant Nutr., 25(10): 2295-2301.
  • Zayed B.A., Salem A.K.M., El Sharkawy H.M. 2011. Effect of different micronutrient treatments on rice (oriza sativa L.) growth and yield under saline soil conditions. World J. Agric. Sci., 7(2): 179-184.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-3beeff7d-bcb3-4072-9db0-2e6b98a9803a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.