PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2010 | 19 | 5 |

Tytuł artykułu

Fractionation of iron and manganese in the horizons of a nutrient-poor forest soil profile using the sequential extraction method

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Soil iron and manganese fractionation is evaluated in the soil profile sampled from a pine-covered area of Wielkopolski National Park (mid-western Poland), that for years has been exposed to acid rain. The soils studied are sands and loamy sands with a pH of 3.3-4.4. The content of iron and manganese was analyzed by sequential extraction in the following fractions: exchangeable, acid extractable, reducible, oxidizable, and residual. The soil profile displays a lithogenically dichotomous structure that is reflected in the iron and manganese content, especially in the Fe residual fraction and Mn oxidizable fraction. In terms of the lability of manganese, it can be stated that the amount of manganese in reducible fractions (Mnred) is higher than in exchangeable and acid extractable ones (except in the surface layer), while the amounts of manganese in fractions in which it is poorly available (Mnox) and unavailable (Mnres) are lower than that of Mnred. For iron, this sequence looks as follows: Feex

Wydawca

-

Rocznik

Tom

19

Numer

5

Opis fizyczny

p.1029-1037,ref.

Twórcy

autor
  • Adam Mickiewicz University, Jeziory Ecological Station, P.O.Box 40, 62-050 Mosina, Poland
  • Poznan University of Life Sciences, Szydlowska 50, 60-656 Poznan, Poland
autor
  • Collegium Polonicum, Adam Mickiewicz University, Kosciuszki 1, 69-100 Slubice, Poland

Bibliografia

  • 1. HESTERBERG D. Biogeochemical cycles processes leading to changes in mobility of chemical in soils. Agric Ecos. Environ. 67, 121, 1998.
  • 2. STUMM W., SULTZBERGER B. The cycling of iron in natural environments: consideration based on laboratory studies of heterogeneous redox processes. Geochim. Cosmochim. Acta 56, 3233, 1992.
  • 3. DZOMBAK D.A., MOREL F.M.M. Surface complexation modeling: hydrous ferric oxide Wiley, New York, 1990.
  • 4. FENG M., SHAN X., ZHANG S., WEN B. Comparison of rhizosphere based method of DTPA, EDTA, CaCl2 and NaNO3 extraction method for prediction of bioavailability of metals in soil. Environ. Pollut. 137, 231, 2005.
  • 5. FIMMEN R.L., RICHTER D.B., VASUDENVAN D., WILLIAMS M.A., WEST L.T. Rhizogenic Fe-C redox cycling: a hypothetical biogeochemical mechanism that drives crustal weathering in uplands soils. J. Biochem. 87, 127, 2008.
  • 6. RODEN E.E., ZACHARA J.M. Microbial reduction of crystalline Fe(III) oxides: influence of oxide surface area and potential for cell growth. Environ. Sci. Technol. 30, 1618, 1996.
  • 7. BUOL S.W., HOLE F.D., McCRACKEN R.J. Soil Genesis and Classification; Iowa State University Press, Iowa, 1989.
  • 8. ZAGÓRSKI Z. Iron forms as indicators of pedo- and lithogenetic processes in non uniform soils. Soil Sci. Annual, Supl. 87, 2001.
  • 9. LUNDSRTOM U.S., VAN BREEMEN N., BAIND D. The podzolization process. A review. Geoderma. 94, 91, 2000.
  • 10. VAN BREEMEN N., MULDER J., DRISCOLL C.T. Acidification and alkalinization of soils. Plant Soil 75, 283, 1983.
  • 11. DONG D., NELSON Y.M., LION L.W., SHULER M.L., GHIORSE W.C. Adsorption of Pb and Cd onto metal oxides and organic material in natural surface coatings as determined by selective extractions: new evidence for importance of Mn and Fe oxides. Water Res. 34, 427, 2000.
  • 12. COUGHLIN B.R., STONE A.T., Nonreversible adsorption of divalent metal ions onto goethite; effects of acidification, Fe(II) addition and picolinic acid addition. Environ. Sci. Technol. 29, 2445, 1995.
  • 13. TANWARA K.S., PETITOA S.C., GHOSEB S.K., ENGB P.J., TRAINORA T.P. Structural study of Fe(II) adsorption on hematite. Geochim. Cosmochim. Acta 72, 3311, 2008.
  • 14. BRUMMER G.W., GERTH J., TILLER K.G. Reaction kinetics of the adsorption and desorption of Ni, Zn, Cd by goethite. J. Soil Sci. 39, 37, 1988.
  • 15. HAYNES R. J., SWIFT R.S. Effects of soil acidification on the chemical extractability of Fe, Mn, Zn, and Cu and growth and micronutrient uptake of blueberry plants. Plant Soil 84, 201, 1985.
  • 16. ABGENIN J. O. The distribution and transformation of iron and manganese in soil fractions in savanna Alfisol under continuous cultivation. Nutr. Cycling Agroecosyst. 66, 259, 2003.
  • 17. JAKUBUS M. The influence of agrotechnical factors on bioavailable contents of microelements in the humus horizon of soil. Pol. J. Soil Sci. XL/2, 195, 2007.
  • 18. WALNA B., SIEPAK J., DRZYMAŁA S. Soil degradation in the Wielkopolski National Park (Poland) as an effect of acid rain simulation. Water Air Soil Pollut. 130, 1727, 2001.
  • 19. LIAO B., GUO Z., ZENG Q., PROBST A., PROBST J.L. Effect of acid rain on competitive releases of Cd, Cu, and Zn from natural soils and two contaminated soils in Hunan, China. Water Air Soil Pollut. Focus 7, 151, 2007.
  • 20. XUE N., SEIP H.M., GUO J., LIAO B., ZENG Q. Distribution of Al, Fe, Mn pools and their correlation in soils from two acid deposition small catchments in Hunan, China. Chemosphere 65, 2468, 2006.
  • 21. RIISE G., VAN HEES P., LUNDSTROM U., STRAND L.T. Mobility of different size fraction of organic carbon, Al, Fe, Mn, and Si in podzols. Geoderma 94, 237, 2000.
  • 22. VAN HEES P.A.W., LUNDSTROM U.S. Equilibrium models of aluminium and iron complexation with different organic acids in soil solution. Geoderma 94, 201, 2000.
  • 23. McBRIDE M.B., Environmental chemistry of soils; Oxford University Press, 1994.
  • 24. WANG X., LIU Y., ZENG G., CHAI L., XIAO X., SONG X., MIN Z. Pedological characteristics of Mn mine tailings and metal accumulation by native plants Chemosphere 72, 1260, 2008.
  • 25. WÓJCIKOWSKA-KAPUSTA A., In: H. Górecki, H. Dobrzański, P. Kafarski (Eds.) Chemistry and biochemistry in the agricultural production, environment protection, human and animal health; Czech-Pol-Trade, Prague-Brussels, 630, 2006.
  • 26. PEARSON G.F., GREENWAY G.M. Recent developments in manganese speciation. Trends Anal. Chem. 24, 803, 2005.
  • 27. BATTY L., HOOLEY D., YOUNGER P. Iron and manganese removal in wetland treatment systems: rates, processes and implications for management. Sci. Total Environ. 394, 1, 2008.
  • 28. HARDIE A.M., HEAL K.V., LILLY A. The influence of pedology and changes in soil moisture on manganese release from upland catchments: soil core laboratory experiments. Water Air Soil Pollut. 182, 369, 2007.
  • 29. KABATA-PENDIAS A., PENDIAS H. Trace elements in soil and plants; 3rd edition; CRS Press, Boca Raton, 2000.
  • 30. BERG B., STEFFEN K.T., McLAUGHERTY C. Litter decomposition rate is dependant on litter Mn concentrations. J. Biogeochem. 82, 29, 2007.
  • 31. QUEVAUVILLER P.H., RAURET G., GRIEPING B. Single and sequential extraction in sediments and soil. Int. J. Environ. Anal. Chem. 51, 231, 1993.
  • 32. TESSIER A., CAMPBELL P.G.C., BISSON M. Sequential extraction procedure for the speciation of particulate trace metals. Anal. Chem. 51, 844, 1979.
  • 33. TACK F.M.G., VERLOO M.G. Chemical speciation and fractionation in soil and sediment heavy metals analysis: a review. Int. J. Environ. Anal. Chem. 59, 225, 1995.
  • 34. HLAVAY J., PROHASKA T., WEISZ M., WENZEL W., STIGEDER G.J. Determination of trace element bound to soil and sediment fraction. Pure Appl. Chem. 76, 415, 2004.
  • 35. FILGUEIRAS A.V., LAVILLA I., BENDICHO C. Chemical sequential extraction for metal partitioning in environmental solid samples. J. Environ. Monit. 4, 823, 2002.
  • 36. LOPEZ-SANCHEZ J.F., SAHUQUILLO A., RAURET G., LACHICA M., BARAHONA E., GOMEZ A., URE A.M., MUNTAU H., QUEVAUVILLER P. H. Extraction procedures for soil analysis. In: P. Quevauviller (Ed.), Methodologies for soil and sediment fractionation studies; The Royal Society of Chemistry, Cambridge, 2002.
  • 37. NAVAS A., LINDHORFER H. Chemical partitioning of Fe, Mn, Zn, Cr in mountain soils of the Iberian and Pyrenean Ranges (NE Spain). Soil Sedim. Cont. 14, 249, 2005.
  • 38. URE A.M., QUEVAUVILLER P., MUNTAU H., GRIEPINK B. Speciation of heavy metals in soil and sediments. An account of improvement and harmonization of extraction techniques undertaken under auspices of the BCR of the Commision of the European Communities. Int. J. Environ. Anal. Chem. 51, 135, 1993.
  • 39. LO I.M.C., YANG X., Y. Removal and redistribution of metals from contaminated soils by a sequential extraction method. Waste Manage. 18, 1, 1998.
  • 40. JARADAT Q.M., MASSADEH A.M., ZAITOUN M.A., MAITAH B. M. Fractionation and sequential extraction of heavy metals in the soil of scarp yard of discarded vehicles. Environ. Model. Assess. 112, 197, 2006.
  • 41. SANCHEZ D.M., QUEIDO A.J., FERNANDEZ M., HERNANDEZ C., SCHMID T., MILLAN R., GONZALEZ M., ALDEA M., MARTIN R., MORANTE R. Mercury and trace element fractionation in Almaden soils by application of different sequential extraction procedures. Bioanal. Chem. 381, 1507, 2005.
  • 42. ABOLLINO O., GIACOMINO A., MALANDRINO M., MENTHASI E., ACETO M., BARBERIS R. Assessment of metal availability in contaminated soil by sequential extraction. Water Air Soil Pollut. 137, 315, 2006.
  • 43. NORTON S.A., COOLIDGE K., AMIRABAHMAN A., BOUCHARDT R., KOPACEK J., REINHARDT R. Speciation of Al, Fe, and P in recent sediments from three lakes in Maine, USA. Sci. Total Environ. 404, 276, 2008.
  • 44. WALNA B. Composition and soil water changes as a measure of atmospheric precipitation impact in forest ecosystem. Cent. Eur. J. Chem. 5, 1, 349, 2007.
  • 45. WALNA B., KURZYCA I., SIEPAK J. Local effects of pollution on chemical composition of precipitation in areas differing in human impact. Pol. J. Environ. Stud. 13, 36, 2004.
  • 46. ASTEL A., WALNA B., KURZYCA I., SIEPAK J. Chemometrics in assessment of local and transboundary pollution. Int. J. Environ. Health 1, 1, 2007.
  • 47. WALNA B., KURZYCA I. Evaluation of bulk deposition in protected woodland area in western Poland. J. Environ. Monit. Assess. 131, 13, 2007.
  • 48. WALNA B., SPYCHALSKI W., SIEPAK J. Assessment of potentially reactive pools of aluminium in poor forest soils using two methods of fractionation analysis. J. Inorg. Biochem. 99/9, 1807, 2005.
  • 49. WALNA B, BIERNACKA J., SIEPAK J. Aluminium as a factor of soil degradation: chemical and mineralogical research. In: A. Kostrzewski, L. Kaczmarek, B. Walna (Eds.) Proceedings of the Conference Environmental Changes in the Wielkopolski National Park, Poznań-Jeziory, Poland,125, 7 May 2004, [In Polish].
  • 50. DUBIKOVA, M., CAMBIER, P., SUCHA, V., CAPLOVICOVA, M. Experimental in soil acidification. Appl. Geochem. 17, 245, 2002.
  • 51. FARMER, V.C., SMITH, B.F.L., WILSON, M.J., LOVELAND, P.J., PAYTON, R.W. Readily-extractable hydroxyaluminium interlayers in clay- and silt- sized vermiculite. Clay Miner. 23, 271, 1988.
  • 52. FUIKAWA Y., FUKUI M., KUDO A. Vertical distributions of trace metals in natural soil horizons from Japan. Part 1. Effect of soil types. Water Air Soil Pollut. 124, 1, 2000.
  • 53. WILCKE W., MULLER S., KANCHANAKOOL N., ZECH W. Urban soil contamination in Bangkok: heavy metal and aluminium partitioning in topsoil, Geoderma 86, 211, 1998.
  • 54. MAITZ I., ESNAOLA V., MILLAN E. Evaluation of heavy metal availability in contaminated soils by short sequential extraction procedure. Sci. Total Environ. 206, 107, 1997.
  • 55. SUTHERLAND R.A., TACK F.M.G. Comparison between non-residual Al, Co, Cu, Fe, Mn, Ni, Pb and Zn released by tree-step sequential extraction procedure and dilute hydrochloric acid leach for soil and road deposited sediment. Anal. Chim. Acta 454, 249, 2002.
  • 56. DONG D., YU LI, BAIYU Z., XIUYI H., BAOHUA Y. Selective chemical extraction and separation of Mn, Fe oxides and organic material in natural surface coating: application to the study of trace metal adsorption mechanism in aquatic environments. Microchem. J. 69, 1, 89, 2001.
  • 57. POPOVIC A., DJODJEVIC D., POLIC P. Intraphase correlations of concentrations obtained by sequential extraction of Nikola Tesla a plant coal ash. In: Proceedings of the First International Conference on Environmental Research and Assessment, Bucharest, Romania, 23-37 March 2003.
  • 58. LIS J., PASIECZNA A. Geochemical Atlas of Poznań and Environs, 1:100,000; Polish Geological Institute, Warszawa 2005 [In Polish].
  • 59. KABAŁA C., SINGH B.R. Fractionation and mobility of copper, lead, and zinc in soil profiles in the vicinity of copper smelter. J. Environ. Quality 30, 485, 2001.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-3b1453d4-442b-48aa-8f7d-7ea03716f16b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.