PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Czasopismo

2010 | 56 | 4 |

Tytuł artykułu

Production of the secondary metabolites in Salvia miltiorrhiza in vitro cultures

Treść / Zawartość

Warianty tytułu

PL
Produkcja metabolitów wtórnych w kulturach in vitro szałwii czerwonokorzeniowej (Salvia miltiorrhiza Bunge)

Języki publikacji

EN

Abstrakty

EN
Salvia miltiorrhiza (family: Lamiaceae) is well known as Danshen in traditional Chinese medicine. It is used mainly in the treatment of cardiovascular diseases. A number of pharmacological studies have proved its wide spectrum of pharmacological activities: cardiovascular protective effect, antioxidant, anti-inflammatory, neuroprotective, antimicrobial and anticancer. The roots of S. miltiorrhiza contain two main groups of active compounds: phenolic constituents and abietane-type diterpenoids (tanshinones). The studies on S. miltiorrhiza in vitro cultures have been focused on secondary metabolites production for over two decades. Both cultures, undifferentiated and transformed, are able to synthesize the active compounds but their content is low. The elicitation treatment significantly enhances the metabolites content at a level close or much higher than in the intact plants. The induction effect depends on many factors: the kind and dose of the elicitor, the type of the culture and its susceptibility, time and ways of administration, the growth state of tissues etc. The yeast extract and some heavy metal ions effectively induce tanshinones biosynthesis such as cryptotanshinone, whereas methyl jasmonate stimulate mainly phenolic compounds – lithospermic acid B and demonstrated limited effect on diterpenoids accumulation. Nowadays, the much attention has been paid to the biosynthetic pathways and genes including expression profiling and cloning. The recognition of the genes pathways and the transcription factors (including the signal transduction steps level) will be helpful in better understanding of the regulatory mechanism and improvement of the production of the interesting secondary metabolites and eventually appliance in the industry.
PL
Szałwia czerwonokorzeniowa (Salvia miltiorrhiza Bunge; rodzina: Lamiaceae) należy do najbardziej znanych ziół w chińskiej medycynie ludowej (Danshen) i od wieków używanych głównie w leczeniu chorób i schorzeń układu krążenia. Liczne badania farmakologiczne potwierdzają szerokie spektrum działania, z których najważniejsze to protekcyjne działanie na układ sercowo-naczyniowy, aktywność antyoksydacyjna i przeciwzapalna, a także neuroprotekcyjna, przeciwdrobnoustrojowa i antynowotworowa. Korzenie tego gatunku zawierają dwie główne grupy związków: związki fenolowe i tanszinony (diterpeny typu abietanu). Badania nad produkcją metabolitów wtórnych w kulturach in vitro Salvia miltiorrhiza prowadzone są od ponad dwudziestu lat. Stwierdzono, że zarówno kultury niezróżnicowanych tkanek, jak i kultury transformowane zdolne są do produkcji związków biologicznie czynnych, choć ich zawartość jest zazwyczaj niska. Zastosowanie elicytorów zwiększa zawartość metabolitów do poziomu zbliżonego lub przewyższającego zawartość w roślinach z gruntu. Efekt elicytacji zależny jest od wielu czynników: rodzaju kultury i jej podatności na działanie elicytora, rodzaju i dawki elicytora oraz terminu i sposobu jego podania, a także fazy wzrostu kultury etc. Stwierdzono, że wyciąg drożdżowy i niektóre jony metali ciężkich stymulują biosyntezę tanszinonów (głównie kryptotanszinonu), natomiast jasmonian metylu – kwasów fenolowych, bez większego wpływu na syntezę diterpenów. Obecnie badania skupiają się głównie na studiowaniu szlaków metabolicznych i enzymów oraz odpowiedzialnych genów. Dokładne poznanie genów odpowiedzialnych za biosyntezę metabolitów i jej regulację (transdukcja sygnałów, czynniki transkrypcyjne) przyczyni się nie tylko do lepszego zrozumienia mechanizmów regulujących i kontrolujących wytwarzanie produktów przemiany materii, ale także do wydajniejszej ich produkcji w kulturach in vitro, a docelowo do zastosowania w produkcji dla potrzeb przemysłu farmaceutycznego.

Słowa kluczowe

Wydawca

-

Czasopismo

Rocznik

Tom

56

Numer

4

Opis fizyczny

p.78-90,ref.

Twórcy

autor
  • Institute of Natural Fibres and Medicinal Plants, Libelta 27, 61-707 Poznan, Poland
autor
autor

Bibliografia

  • 1. W ang S, Tian S, Yang F, Yanng X, Du G. Cardioprotective effect of salvianolic acid A on isoproterenolinduced myocardial infarction in rats. Eur J Pharmacol 2009; 615:125-32.
  • 2. Ren Z, Tong Y, Xu W, Ma J, Chen J. Tanshinone IIA attenuates inflammatory responses of rats with myocardial infraction by reducing MCP-1 expression. Phytomedicine 2010; 17:212-18.
  • 3. Park E, Zhao Y, Kim Y, Sohn D. Preventive effects of a purified extract isolated from Salvia miltiorrhiza enriched with tanshinone I, tanshinone IIA and cryptotanshinone on hepatocyte injury in vitro and in vivo. Food Chem Toxicol 2009; 47:2742-8.
  • 4. Y u X, Lin S, Zhou Z, Chen X, Liang J, Duan W, Yu X, Chowbay B, Li C, Dsheu F, Chan E, Zhou S. Tanshinone II B, aprimary active constituent from Salvia miltiorrhiza, enhibits neuro-protective activity in experimentally stroked rats. Neurosci Lett 2007; 417:261-5.
  • 5. Matkowski A, Zielińska S, Oszmiański J, Lamer-Zarawska E. Antioxidant activity of extracts from leaves and roots of Salvia miltiorrhiza Bunge, S. przewalski Maxim., and S. verticillata L. Bioresour Technol 2009; 99:7892-6.
  • 6. S han Y, Shen X, Xie Y, Chen J, Shi H, Yu Z, Song Q, Zhou M, Zhang Q. Inhibitory effects of tanshinone II -A on invasion and metastasis of human colon caricinoma cells. Acta Pharmacol Sin 2009; 30:1537-42.
  • 7. T ian H, Yu T, Xu N, Feng C, Zhou L, Luo H, Chang D, Le X, Luo K. A novel compound modified from tanshinone inhibits tumor growth in vivo via action of the intrinsic apoptotic pathway. Cancer Lett 2010; 297:18-30.
  • 8. Buchwald W, Kędzia B, Mścisz A. Microbiological research on the extracts from Salvia miltiorrhiza Bunge roots. Herba Pol 2007; 53:63-8.
  • 9. Z hou Z, Zhang Y, Ding X, Chen S, Yang J, Wang X, Jia G, Chen H, Bo X, Wang S. Protocatechiuc aldehyde inhibits hepatitis B virus replication both in vitro and in vivo. Antiviral Res 2007; 74:59-64.
  • 10. C hen TO . Cardiovascular effects of Danshen. Int J Cardiol 2007; 121:9-22.
  • 11. Mei Z, Zhang F, Tao L, Zheng W, Cao Y, Wang Z, Tang S, Le K, Chen S, Pi R, Liu P. Cryptotanshinone, a compound from Salvia miltiorrhiza modulates amyloid precursor protein metabolism and attenuates β-amyloid deposition through upregulating α-secretase in vivo and in vitro. Neurosci Lett 2009; 452:90-5.
  • 12. J ung SH , Seol HJ , Jeon SJ , Son KH, Lee JR. Insulin-sensitizing activities of tanshinones, diterpenecompounds of the root of Salvia miltiorrhiza Bunge. Phytomedicine 2009; 19:327-35.
  • 13. Z hang Z, Gao J, Wang Y, Song T, Zhang J, Wu G, Zhang T, Du G. Tanshinone IIA triggers p53 responses and apoptosis by RNA polymerase II upon DANN minor groove binding. Biochem Pharmacol 2009; 78:1316-22.
  • 14. J i W, Gong BQ. Hypolipidemic activity and mechanism of the purified herbal extract of Salvia miltiorrhiza in hyperlipidemic rats. J Ethnopharmacol 2009; 119:291-8.
  • 15. C olombo G, Serra S, Vacca G, Orrù A, Maccioni P, Morazzoni P, Bombardelli E, Riva A, Gessa GL , Carai MA. Identification of miltirone as active ingradient of Salvia miltiorrhiza responsible for the reducing effect of root extract on alcohol intake in rats. Alcohol Clin Exp Res 2006; 30:754-62.
  • 16. L i J, HE LY , Song WZ . Separation and quanitative determination of seven aqueos depsides in Salvia miltiorrhiza by HPLC scanning. Yao Hsueh Pao. 1993;28(7):543-7
  • 17. L i L, Tan R, Chen WM. Salvianolic acid A, anew depside from roots of Salvia miltiorrhiza. Planta Med 1984; 50:227-8.
  • 18. A i C, Li L. salvianolic acids D and E: two new depsides from Salvia miltiorrhiza. Planta Med. 1992; 58:197-9.
  • 19. Kohda K, Takeda O, Tanaka S, Yamasaki K, Yamashita A, Kurokawa T, Ishibashi S. Isolation of inhibitors of adenylate cyclase from Dan-shen, the root of Salvia miltiorrhiza. Chem Pharm Bull 1989; 37(5):1287-90.
  • 20. L iu AH , Li L, Xu M, Lin YH , Guo HZ , Guo DA. Simultaneous quantification of six major phenolic acids in the roots of Salvia miltiorrhiza and four related traditional Chinese medicinal preparations by HPLC –DAD method. J Pharm Biomed Anal 2006; 41(1):48-56.
  • 21. L uo HW , Wu BJ, Wu MY, Yong ZG , Niwa M, Hirata Y. Pigments from Salvia miltiorrhiza. Phytochemistry 1985; 24(4):815-17.
  • 22. I keshiro Y, Hashimoto I, Iwamoto Y, Mase I, Tomita Y. Diterpenoids from Salvia miltiorrhiza. Phytochemistry.1992; 30(8):2791-2.
  • 23. L i HB, Chen F. Preparative isolation and purification of six diterpenoids from the Chinese medicinal plant Salvia miltiorrhiza by high-speed counter-current chromatography. J Chromatogr A 2001; 925(1-2):109-14.
  • 24. Buchwald W, Mrozikiewicz PM. Influence of development stage on the content of biologicaly active compounds of Salvia miltiorrhiza Bunge roots. Herba Pol 2007; 53(3):15-19.
  • 25. L i M, Chen J, Peng Y, Wu Y, Wu Q, Xiao P. Investigation of Danshen and related medicinal plants in China. J Ethnopharmacol 2008; 120:419-26.
  • 26. C hina Pharmacopoeia Committee 2005. Pharmacopoeia of P.R. China. Part I. People’s Health Publishing house, Bejing. 2005:52-53.
  • 27. Kim JH , Yun JH , Hwang YS , Buyn SY , Kim DI. Production of taxol and related taxanes in Taxus brevifolia cell cultures: Effect of sugar. Biotechnol Lett 1995; 17(1):101-6.
  • 28. Kim DI, Cho GH , Pedersen H, Chin CK. A hybrid bioresctor for high density cultivation of plant cellsuspensions. Appl Microbiol Biotechnol 1991; 34(6):726-9.
  • 29. Kim DI, Chang HN . Emhanced shikonin production from Lithospermum erythrorizon by in situ extraction and calcium alginate immobilization. Biotechnol Bioe ng 1990; 36:460-6.
  • 30. H uang B, Duan Y, Yi B, Sun L, Lu B, Yu X, Sun H., Zhang H, Chen W. Characterization and expression profiling of cinnamate 4-hydroxylase gene from Salvia miltiorrhiza in rosmarinic acid biosynthesis pathway. Russ J Plant Physiol 2008; 55(3):390-9.
  • 31. Kai G, Liao P, Zhang T, Zhou W, Wang J, Xu H, Liu Y, Zhang L. Characterization, expression profiling,and functional identification of a gene encoding geranylgeranyl diphosphatase synthase from Salvia miltiorrhiza. Biotechnol. Bioprocess Eng 2010; 15:236-45.
  • 32. N akanishi T, Miyasaka H, Nasu M, Hashimoto H, Yoneda K. Production of cryptotanshinone and ferruginol in cultured cells of Salvia miltiorrhiza. Phytochemistry 1983; 22:721-2. 88
  • 33. Miyasaka H, Nasu M, Yamamoto T, Yoneda K. Production of ferruginol by cell suspension cultures of Salvia miltiorrhiza. Phytochemistry. 1985; 24:1931-3.
  • 34. Miyasaka H, Nasu M., Yamamoto T, Endo Y, Yoneda K. Regulation of ferruginol and cryptotanshinone biosynthesis in cell suspension culture of Salvia miltiorrhiza. Phytochemistry 1986; 25:637-40.
  • 35. Miyasaka H, Nasu M, Yamamoto T, Shiomi Y, Ohno H, Endo Y, Yoneda K. Effect of nutritional factors on cryptotanshinone and ferruginol production by cell suspension cultures of Salvia miltiorrhiza. Phytochemistry 1987; 26:1421-4.
  • 36. Miyasaka H, Nasu M, Yoneda K. Salvia miltiorrhiza: in vitro production of cryptotanshinone and ferruginol. [in:]: Biotechnology in Agriculture and forestry. Medicinal and Aromatic Plants II . XXIII . Edited by YPS Bajaj. Berlin-Heidelberg 1989:418-30.
  • 37. W u CT , Mulabagal V, Nalawade SM, Chen CL , Yang TF, Tsay HS . Isolation and quantitative analysis of cryptotanshinone, an active quinoid diterpene formed in callus of Salvia miltiorrhiza Bunge. Biol Pharm Bull 2003; 26(6):845-8.
  • 38. Krajewska-Patan A, Dreger M, Górska-Paukszta M, Mścisz A, Mielcarek S, Baraniak M, Buchwald W, Marecik R, Grajek W, Mrozikiewicz PM. Salvia miltiorrhiza Bunge in vitro cultivation. Herba Pol 2007; 53(4):88-96.
  • 39. Z hao JL , Zhou LG , Wu JY . Effect of biotic and abiotic elicitors on cell growth and tanshinone accumulation in Salvia miltiorrhiza. Appl Microbiol Biotechnol 2010; 87:137-144
  • 40. Z hang Y, Song J, Zhao B, Liu H. Crown gall culture and production of tanshinone in Salvia miltiorrhiza. Chin J Biotechnol 1995; 11(2):137-40.
  • 41. C hen H, Yuan JP, Zhang FC, Song JY . Tanshinone production in Ti-transformed Salvia miltiorrhiza cell suspension culture. J Biotechnol 1997; 58:147-56.
  • 42. C hen H, Chen F, Zhang YL , Song JY . Production of rosmarinic acid and lithospermic acid B in Ti transformed Salvia miltiorrhiza cell suspension cultures. Process Biochem 1999; 34:777-84.
  • 43. C hen H, Chen F. Kinetics of cell growth and secondary metabolism of a high-tanshinone-producing line of the Ti transformed Salvia miltiorrhiza cells in suspension culture. Biotechnol Lett 1999; 21:701-5.
  • 44. C hen H, Chen F. Effect of methyl jasmonate and salicic acid on cell growth and cryptotanshinone formation in Ti transformed Salvia miltiorrhiza cell suspension cultures. Biotechnol Lett 1999; 21:803-7.
  • 45. C hen H, Chen F. Effect of yeast elicitor on the secondary metabolism of Ti transformed Salvia miltiorrhiza cell suspension cultures. Plant Cell Rep 2000;19: 710-17.
  • 46. C hen H, Chen F. Induction of phytoalexin formation in crown gall and hairy root culture of Salvia miltiorrhiza by methyl violagen. Biotechnol Lett 2000; 22:715-20.
  • 47. C hen H, Chen F. Effect of yeast elicitor on growth and secondary metabolism of a high-tanshinoneproducing line of the Ti transformed Salvia miltiorrhiza cells in suspension culture. Process Biochem 2000; 35:837-40.
  • 48. Z hong JJ , Chen H, Chen F. Production of rosmarinic acid, lithospermic acid B and tanshinones by suspension cultures of Ti-transformed Salvia miltiorrhiza in bioreactors. J Plant Biotechnology 2001; 3(2):107-12.
  • 49. H u ZB, Alfermann AW . Diterpenoid production in hairy root cultures of Salvia miltiorrhiza. Phytochemistry 1993; 32(3):699-703.
  • 50. W ysokińska H, Chmiel A. Produkcja roślinnych metabolitów wtórnych w kulturach organów transformowanych. Biotechnologia 2006; 4(75):124-35.
  • 51. C hen H, Chen F, Zhang Z-L, Song J-Y. Production of lithospermic acid B and rosmarinic acid in hairy root cultures of Salvia miltiorrhiza. J Ind Microbiol Biotechnol 1999; 22:133-8.
  • 52. C hen H, Chen F, Chiu FCK, Lo CMY. The effect of yeast elicitor on the growth and secondary metabolism of hairy root cultures of Salvia miltiorrhiza. Enzyme Microb Technol 2001; 28:100-5.
  • 53. Z hang C, Yan Q, Cheuk W, Wu J. Enhancement of tanshinone production in Salvia miltiorrhiza hairy root cultures by Ag+ elicitation and nutrient feeding. Planta Med 2004; 70:147-51.
  • 54. G e X, Wu J. Tanshinone production and isoprenoid pathways in Salvia miltiorrhiza hairy roots induced by Ag+ and yeast elicitor. Plant Sci 2005; 168:487-91.
  • 55. G e X, Wu J. Induction and potentiation of diterpenoid tanshinone accumulation in Salvia miltiorrhiza by hairy roots by β-aminobutyric acid. Appl Microbial Biotechnol 2005; 68:183-8.
  • 56. Y an Q, Shi M, Ng J, Wu JY . Elicitor-induced rosmarinic acid accumulation and secondary metabolism enzyme activities in Salvia miltiorrhiza hairy roots. Plant Sci 2006; 170:853-8.
  • 57. Xiao Y, Gao S, Di P, Chen J, Chen W, Zhang L. Lithospermic acid B is more responsive to silver ions (Ag) than rosmarinic acid in Salvia miltiorrhiza hairy root cultures. Biosci Rep 2010; 30:33-40.
  • 58. Xiao Y, Gao S, Di P, chen J, Chen W, Zhang L. Methyl jasmonate dramatically enhanced the accumulation of phenolic acids in Salvia miltiorrhiza hairy root cultures. Physiol Plant 2009; 137:1- 9.
  • 59. Y an Q, Hu Z, Tan RX, Wu J. Efficient production and recovery of diterpenoid tanshinones in Salvia miltiorrhiza hairy root cultures with in situ adsorption, elicitation and semi-continuous operation. J Biotechnol. 2005;119:416-424
  • 60. S hi M, Kwok KW, Wu JY . Enhancement of tahshinone production in Salvia miltiorrhiza Bunge (red or Chinese sage) hairy-root culture by hyperosmotic stress and yeast elicitor. Biotechnol Appl Biochem. 2007; 46:191-6.
  • 61. W u JY , Shi M. Ultrahigh diterpenoid tanshinone production through repeated osmotic stress and elicitor stimulation in fed-batch culture of Salvia miltiorrhiza hairy roots.Appl Microbiol Biotechnol 2008; 78:441-8.
  • 62. W u JY , Ng J, Shi M, Wu S-J. Enhanced secondary metabolite (tanshinone) production of Salvia miltiorrhiza hairy roots in a novel root-bacteria coculture process. Appl Microbiol Biotechnol 2007; 77:543-50.
  • 63. Z hao J, Davis LC , Verpoorte R. Elicitor signal transduction leading to production of plant secondary metabolites. Biotechnol Adv 2005; 23:283-333.
  • 64. Matkowski A. Plant in vitro culture for the production of antioxidants – a review. Biotechnol Adv. 2008;26:548-560
  • 65. Petersen M, Hausler E, Meinhard J, Karwatzki B, Gertlowski C. The biosynthesis of rosmarinic acid in suspension culture of Coleus blumei. Plant Cell Tiss Org Cult 1994; 38:171-9.
  • 66. Matsuno M, Nagatsu A, Ogihara Y, Ellis BE, Mizukami H. CY P98A6 from Lithospermum erythrorhizon encodes 4-coumaroyl-4-hydroksyphenyllactic acid 3-hydrolase involved in rosmarinic acid biosynthesis. FEBS Lett 2002: 514:219-24.
  • 67. Xiao Y, Di P, Chen J, Liu Y, Chen W, Zhang L. Characterization and expression profiling of 4-hydroxyphenylpyruvate dioxygenase gene (Smhppd) from Salvia miltiorrhiza hairy root cultures. Mol Biol Rep 2009; 36:2019-22.
  • 68. H u YS , Zhang L, Di P, Chen WS . Cloning and induction of phenylalanine Ammonia-lyase gene from Salvia miltiorrhiza and its effect on hydrophilic phenolic acids levels. Chin J Nat Med 2009; 7:0449- 57.
  • 69. Xu G, Peng LY , Tu L, Li XL, Zhao Y, Zhang PT, Zhao QS. Three new diterpenoids from Salvia przewalskii Maxim. Helvetica Chimica Acta 2009; 92(2):409-13.
  • 70. S kała E, Wysokońska H. Tanshinone production in roots of micropropagated Salvia przewalski Maxim. Z Naturforsch 2005; 60c:583-6.
  • 71. Y an YP, Wang ZZ , Tian W, Dong ZM, Spencer DF. Generation and analysis of expressed sequence tags from the medicinal plants Salvia miltiorrhiza. Sci China Life Sci 2010; 53:273-85.
  • 72. L iu Y, Wang H, Ye HC , Li GF. Advances in the plant isoprenoid biosynthesis pathway and its metabolic engineering. J Integr Plant Biol 2005; 47:769-82.

Uwagi

Rekord w opracowaniu

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-3af06180-76df-4086-81cf-d78b5ef0375a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.