Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2019 | 28 | 4 |
Tytuł artykułu

Uptake and leaching of Cu, Cd, and Cr after EDTA application in sand columns using sorghum and pearl millet

Warianty tytułu
Języki publikacji
In a greenhouse experiment using sand columns, sorghum and pearl millet were grown and spiked with metal solutions of Cu, Cd, and Cr in two concentrations. The chelating agent EDTA was applied to one-month-old plants and metal mobilization was observed through uptake by the plants or leaching through the columns during a period of one month. Growth was much better in pearl millet than sorghum under metal stress. Metal uptake was significantly higher in sorghum and was in the order root>shoot>leaves in both the plants. Metals were differentially mobilized in the order of Cu>Cr>Cd as shown by plant uptake and leaching through the columns. The root to shoot translocation of Cd was significantly improved after EDTA application, and to some extent for Cu but not for Cr. The leaching of metals was the maximum in the second week of application and was almost negligible by the fourth week conforming to the amount of EDTA detected in the leachate. Leaching of Cr differed in the maximum amount at the time of chelant application, while Cu and Cd showed maximum leaching after 7 days. As compared to sorghum, pearl millet was better at controlling leaching because of its extensive root system.
Słowa kluczowe
Opis fizyczny
  • Department of Botany, University of the Punjab, Lahore 54590, Pakistan
  • Department of Botany, University of Gujrat, Gujrat-50700, Pakistan
  • College of Earth and Environmental Sciences, University of the Punjab, Lahore-54590, Pakistan
  • Department of Botany, University of the Punjab, Lahore 54590, Pakistan
  • 1. SAIFULLAH., MEERS E., QADIR M., DE CARITAT P., TACK FMG., DU LAING G., ZIA M.H. EDTA-assisted Pb phytoextraction. Chemosphere. 74, 1279, 2009.
  • 2. MIAO Y., XI-YUAN X., XU-FENG M., ZHAO-HUI W., FENG-YONG G. Effect of amendments on growth and metal uptake of giant reed (Arundo donax L.) grown on soil contaminated by arsenic, cadmium and lead. Trans. Nonferrous Met. Soc. 22, 1462, 2012.
  • 3. ARSHAD M., SILVESTRE J., PINELLI E., KALLERHOFF J., KAEMMERER M., TARIGO A., SHAHID M., GUIRESSE M., PRADERE P., DUMAT C. A field study of lead phytoextraction by various scented Pelargonium cultivars. Chemosphere. 71, 2187, 2008.
  • 4. ZHIVOTOVSKY O.P., KUZOVKINA YA., SCHULTHESS C.P., MORRIS T., PETTINELLI D. Lead uptake and translocation by willows in pot and field experiments. Int. J. Phytorem.13, 731, 2011.
  • 5. BARRUTIA O., GARBISU C., HERN´ANDEZALLICA J., GARC´IA-PLAZAOLA J.I., BECERRIL J.M. Differences in EDTA-assisted metal phytoextraction between metallicolous and non-metallicolous accessions of Rumex acetosa L. Environ. Pollut. 158, 1710, 2010.
  • 6. HADI F., BANO A., FULLER M.P. The improved phytoextraction of lead (Pb) and the growth of maize (Zea mays L.): The role of plant growth regulators (GA3 and IAA) and EDTA alone and in combinations. Chemosphere. 80, 457, 2010.
  • 7. GOEL S., GAUTAM A. Effect of chelating agents on mobilization of metal from waste catalyst. Hydrometallurgy, 101, 120, 2010.
  • 8. ZHAO Z., XI M., JIANG G., LIU X., BAI Z., HUANG Y. Effects of IDSA, EDDS and EDTA on heavy metalsaccumulation in hydroponically grown maize (Zea mays L.). J. Hazard. Mater. 181, 455, 2010.
  • 9. NEUGSCHWANDTNER R.W., TLUSTOˇS P., KOM´AREK M., SZ´AKOV´A J., JAKOUBKOV´A L. Chemically enhanced phytoextraction of risk elements from a contaminated agricultural soil using Zea mays and Triticum aestivum: Performance and metal mobilization over a three year period. Int. J. Phytorem.14, 754, 2012.
  • 10. BARONA A., ARANGUIZ I., ELIAS A. Metal associations in soils before and after EDTA extractive decontamination: implications for the effectiveness of further clean-up procedures. Environ. Pollut. 113, 79, 2001.
  • 11. GRCMAN H., VODNIK D., VELIKONJA-BOLTA S., LESTAN D. Ethylenediaminedissuccinate as a new chelate for environmentally safe enhanced lead phytoextraction. J. Environ. Qual. 32, 500, 2003.
  • 12. EVANGELOU M.W.H., EBEL M., SCHAEFFER A. Chelate assisted phytoextraction of heavy metals from soil: Effect, mechanism, toxicity, and fate of chelating agents, Chemosphere. 68, 989, 2007.
  • 13. BLAYLOCK M.J., SALT D.E., DUSHENKOV S., ZAKHAROVA O., GUSSMAN C., KAPULNIK Y., ENSLEY B.D., RASKIN I. Enhanced accumulation of Pb in Indian mustard by soil-applied chelating agents. Environ. Sci. Technol.31, 860, 1997.
  • 14. SHEN Z.G., LI XD., WANG C.C., CHEN H.M., CHUA H. Lead phytoextraction from contaminated soil with high biomass plant species. J. Env. Qual. 31, 1893, 2002.
  • 15. MUHAMMAD D., CHEN F., ZHAO J., ZHANG G., WU F. Comparison of EDTA- and citric acid-enhanced phytoextraction of heavy metals in artificially metal contaminated soil by Typha angustifolia. Int. J. Phytorem. 11, 558, 2009.
  • 16. BAREEN F., TAHIRA A. Efficiency of seven different cultivated plant species for phytoextraction of toxic metals from tannery effluent contaminated soil using EDTA. Soil Sed. Contam. 19, 160, 2010.
  • 17. GHEJU M., PODE R., MANEA F. Comparative heavy metal chemical extraction from anaerobically digested biosolids. Hydrometallurgy. 108, 115, 2011.
  • 18. PADMAPIYA S., MURUGAN N., RAGAVENDRAN C., THANGABALU R., NATARANJAN D. Phytoremediation potential of some agricultural plants on heavy metal contaminated mine waste soils, Salem district, Tamilnadu. Int. J. Phytorem. 18, 288, 2016.
  • 19. BAREEN F., SHAFIQ M., JAMIL S. Role of plant growth regulators and a saprobic fungus in enhancement of metal phytoextraction potential and stress alleviation in pearl millet. J. Hazard. Mater. 237-238, 186-193, 2012.
  • 20. STEEL R.G., TORRIE J.H. Principles and Procedures of Statistics, A Biometrical Approach, 2nd ed., McGraw Hill International Book Company, UK, 1998.
  • 21. GREENBERG A.E., CLESSERI L.S., EATON A.D. Standard Methods for the Examination of Water and Waste Water, 20th ed., American Public Health Association, USA, 1998.
  • 22. SHI G., CAI Q. Cadmium Tolerance and accumulation in eight potential energy crops. Biotechnol. Adv. 27, 555, 2009.
  • 23. BELAL F., ALY F.A., WALASH M.I., KENAWY M.I., OSMAN A.M. Determination of ethylenediaminetetraacetic acid (EDTA) in pharmaceutical dosage forms using flame atomic absorption spectroscopy. IL Farmaco. 53, 365, 1998.
  • 24. MEERS E., QADIR M., DE CARITAT P., TACK F.M.G., DU LAING G., ZIA M.H. EDTA-assisted Pb phytoextraction. Chemosphere. 74, 1279, 2009.
  • 25. LINGUA G., TODESCHINI V., GRIMALDI M., BALDANTONI D., PROTO A., CICATELLI A., CASTIGLIONE S. Polyaspartate, a biodegradable chelant that improves the phytoremediation potential of poplar in a highly metal-contaminated agricultural soil. J. Environ. Manage. 132, 9, 2014.
  • 26. JUNIOR C.A., MAZZAFERA P., ARRUDA M.A.Z. A comparative ionomic approach focusing on cadmium effects in sunflowers (Helianthus annuus L.). Environ. Exp. Bot. 107, 180, 2014.
  • 27. ALI S.Y., CHAUDHURY S. EDTA-enhanced phytoextraction by tagetes sp. and effect on bioconcentration and translocation of heavy metals. Environ. Proc. 3, 735, 2016.
  • 28. KOLBAS A., MARCHAND L., HERZIG R., NEHNEVAJOVA E., MENCH M. Phenotypic seedling responses of a metal-tolerant mutant line of sunflower growing on a Cu-contaminated soil series: potential uses for biomonitoring of Cu exposure and phytoremediation. Plant Soil, 376, 377, 2014.
  • 29. PRITSA T.S., FOTIADIS E.A., LOLAS P.C. Corn tolerance to atrazine and cadmium and sunflower to cadmium in soil and hydroponic culture. Commun. Soil Sci. Plant Anal. 39, 1168, 2008.
  • 30. CORNU J.Y., BAKOTO R., BONNARD O., BUSSIERE S., CORIOU C., SIRGUEY C., STERCKEMAN T., THUNOT S., VISSE M.I., NGUYEN C. Cadmium uptake and partitioning during the vegetative growth of sunflower exposed to low Cd concentrations in hydroponics. Plant Soil. doi:10.1007/s11104-016-2839-8, 2016.
  • 31. DING H., WANG G., LOU L., LV J. Physiological responses and tolerance of kenaf, (Hibiscus cannabinus L.) exposed to chromium. Ecotoxicol. Environ. Saf. 133, 500, 2016.
  • 32. DI LONARDO S., CAPUANA M., ARNETOLI M., GABBRIELLI R., GONNELLI C. Exploring the metal phytoremediation potential of three Populus alba L. clones using an in vitro screening. Environ. Sci. Pollut. Res. 18, 82, 2011.
  • 33. ZACCHINI M., PIETRINI F., SCARASCIA MUGNOZZA G., IORI V., PIETROSANTI L., MASSACCI A. Metal tolerance, accumulation and translocation in poplar and willow clones treated with cadmium in hydroponics. Water Air Soil Pollut. 197, 234, 2009.
  • 34. SINHAL V.K., SRIVASTAVA A., SINGH V.P. EDTA and citric acid mediated phytoextraction of Zn, Cu, Pb and Cd through marigold (Tagetes erecta). J. Environ. Biol. 31, 255, 2010.
  • 35. ZAIER H., GHNAYA T., GHABRICHE R., CHMINGUI W., LAKHDAR A., LUTTS S., ABDELLY C. EDTAenhanced phytoremediation of lead-contaminated soil by the halophyte Sesuvium portulacastrum. Environ. Sci. Pollut. Res. Int. 21, 7607, 2014.
  • 36. GUNAWARDANA B., SINGHAL N., JOHNSON A. Amendments and their combined application for enhanced copper, cadmium and lead uptake by Lolium perenne. Plant Soil. 329, 283, 2010.
  • 37. NORLEELASELAMAT S., ABDULLAH R.S.S., IDRIS M. Phytoremediation of lead (Pb) and arsenic (As) by Melastoma malabathricum L. from contaminated soil in separate exposure. Int. J. Phytorem. 16, 694, 2014.
  • 38. CHEN H., CUTRIGHT T. EDTA and HEDTA effects on Cd, Cr and Ni uptake by Helianthus annuus. Chemosphere. 45, 21, 2001.
  • 39. MEERS E., RUTTENS A., HOPGOOD M., LESAGE E., TACK F.M.G. Potential of Brassica rapa, Cannabis sativa, Helianthus annuus and Zea mays for phytoextraction of heavy metals from calcareous dredged sediment derived soils. Chemosphere.61, 561, 2005.
  • 40. EBRAHIMI M. Effect of EDTA and DTPA on phytoremediation of Pb-Zn contaminated soils by Eucalyptus camaldulensis Dehnh and effect on treatment time. Desert. 19, 65, 2014.
  • 41. CHIGBO C., BATTY L. Chelate-assisted phytoremediation of Cu-pyrene-contaminated soil using Z. mays. Water Air Soil Pollut. 226, 1, 2015.
  • 42. TURGUT C., PEPE K.M., CUTRIGHT T.J. The effect of EDTA and citric acid on phytoremediation of Cd, Cr, and Ni from soil using Helianthus annuus. Environ. Pollut. 131, 147, 2004.
  • 43. JANUARY M.C., CUTRIGHT T.J., KEULEN H.V., WEI R. Hydroponic phytoremediation of Cd, Cr, Ni, As, and Fe: Can Helianthus annuus hyperaccumulate multiple heavy metals? Chemosphere. 70, 531, 2008.
  • 44. WANG A., LUO C., YANG R., CHEN Y., SHEN Z., LI, X. Metal leaching along soil profiles after he EDDS application - A field study. Environ. Pollut. 164, 204, 2012.
  • 45. JEAN-SORO L., BORDAS F., BOLLINGER J.C. Column leaching of chromium and nickel from a contaminated soil using EDTA and citric acid. Environ. Pollut. 164, 175, 2012.
  • 46. KOMÁREK M., VANĚK A., MRNKA L., SUDOVÁ R., SZÁKOVÁ J., TEJNECKÝ V., CHRASTNÝ V. Potential and drawbacks of EDDS-enhanced phytoextraction of copper from contaminated soils. Environ. Pollut. 158, 2428, 2010.
  • 47. XU Y., YAMAJI N., SHEN R., MA J.F. Sorghum roots are inefficient in uptake of EDTA-chelated lead. Ann. Bot. 99, 869, 2007.
  • 48. ZHAO S., LIAN F., DUO L. EDTA-assisted phytoextraction of heavy metals by turfgrass from municipal solid waste compost using permeable barriers and associated potential leaching risk. Biores. Technol. 102, 621, 2011.
  • 49. HERNANDEZ-ALLICA J., GARBISU C., BARRUTIA O., BECERRIL J.M. EDTA-induced heavy metal accumulation and phytotoxicity in cardoon plants. Environ. Exp. Bot. 60, 26, 2007.
  • 50. BAREEN F. Chelate assisted phytoextraction in the oilseed Brassicas. In: N.A. Anjum I. Ahmad, M.E. Pereira, A.C. Duarte, S. Umar, N.A. Khan, (Eds.). The Plant Family Brassicaceae: Contribution towards Phytoremediation. Environmental Pollution Book Series, Vol. No. 21, Springer: Dordrecht, the Netherlands. 289, 2012.
  • 51. TSANG D.C., ZHANG W., LO I.M. Copper extraction effectiveness and soil dissolution issues of EDTA-flushing of artificially contaminated soils. Chemosphere. 68, 234, 2007.
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.