PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2018 | 51 | 1 |

Tytuł artykułu

The development of nutrient contents on a new conservation area in the far North of Germany concerning different types of use. a proposal for a sustainable development in nature conservation practice

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The present study analyzes a short-term observation of a newly created nature conservation area. The aim was to investigate different effects of grazing by cattle and, otherwise, the frequent mowing on the development of nutrient contents of soils. The results are typical for the strong sandy Weichselian outwash plain in the north of Central Europe (Schleswig-Holstein, Germany). Two neighboring testing areas of different use and sowed with an agricultural grass were observed for more than two years. The first area had been grazed intensively by cattle and the other one had been mowed twice a year. During this time, several nutrients and other soil parameters have been analyzed at regular intervals. Furthermore, we made observations about soil compaction and the succession of vegetation. The results show a stronger reduction especially of nitrogenous nutrients on the mowing area (-25%). In contrast, on the grazing area, the contents of nitrogen doubled during two growing seasons (+125%). However, a high atmospheric input of nitrogen strengthened the result. Less conclusive were the results about the contents of potassium, phosphorus and SOM. Therefore, mowing could be advised, if quick results are required concerning the impoverishment of soils. Furthermore, the development of succession vegetation was quite different on both areas with the number of plant species 12% higher on the grazing area. However, long-term but non-intensive cattle-grazing must still be rated as an excellent method of maintenance for this type of cultural landscape. It corresponds with the centuries-old land-use practice in this type of landscape and promotes high level of biodiversity. Therefore, there is nothing that speaks against non-intensive grazing from the beginning on a newly created nature-protection area within a long-term conception of nature conservation. The removal of A horizons should be avoided as it damages Holocene soil profies and has only short-term effects.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

51

Numer

1

Opis fizyczny

p.133-158,fig.,ref.

Twórcy

autor
  • Europe University of Flensburg and Johannes Gutenberg University of Mainz, Auf dem Campus 1, 24943 Flensburg, Germany
autor
  • University of Applied Sciences, KanzleistraBe 91-93, 24943 Flensburg, Germany
autor
  • Bunde Wischen e.V., Konigswiller Weg 13, 24837 Schleswig, Germany
autor
  • CAU Kiel, Ludewig-Meyn-StraBe 14, 24098 Kiel, Germany
autor
  • CAU Kiel, OlshausenstraBe 75, 24118 Kiel, Germany
  • Nature Conservation Authority, Kreis Schleswig-Flensburg, Flensburger StraBe 7, 24837 Schleswig, Germany

Bibliografia

  • Ad-hoc-AG Boden, 2005. Bodenkundliche Kartieranleitung. 5th Edition, Hannover.
  • Afzalinia, S., Zabihi, J., 2014. Soil compaction variation during corn growing season under conservation tillage. Soil and Tillage Res. 137 (0), 1–6. DOI: 10.1016/j.still.2013.11.003.
  • Bakker, J.P., Bie, S. de, Dallinga, J.H., Tjaden, P., Vries, Y. de, 1983. Sheep-grazing as a management tool for heathland conservation and regeneration in the Netherlands. J. Appl. Ecol. 20. 541–560. DOI: 10.2307/2403525.
  • Bakker, J.P., Vries, Y. de, 1985. Über die Wiederherstellung artenreicher Wiesengesellschaften unter verschiedenen Mahdsystemen in den Niederlanden. Natur und Landschaft 60. 292–296.
  • Bakker, J.P., 1987. Restoration of species-rich grassland after a period of fertilizer application. Geobotany 10. 185-200. DOI: 10.1007/978-94-009-4055-0_12.
  • Barik, K., Aksakal, E.L., Islam, K.R., Sari, S., Angin, I., 2014. Spatial variability in soil compaction properties associated with field traffic operations. Catena 120 (0), 122–133. DOI: 10.1016/j.catena.2014.04.013.
  • Barkmann, J.J., Doing, H., Segal, S., 1964. Kritische Bemerkungen und Vorschläge zur quantitativen Vegetationsanalyse. Acta Bot. Neerl. 13. 394-419. DOI: 10.1111/j.1438-8677.1964.tb00164.x.
  • Bivand, R.S., Pebesma, E.J., Gomez-Rubio, V., 2013. Applied spatial data analysis with R, Second edition. Springer, New York. DOI: 10.1007/978-1-4614-7618-4_1
  • Blume, H.P. ed., 2000. Handbuch der Bodenuntersuchung. Terminologie, Verfahrensvorschriften und Datenblätter; physikalische, chemische, biologische Untersuchungsverfahren; gesetzliche Regelwerke, Weinheim, New York.
  • Braunack, M.V., Johnston, D.B., 2014. Changes in soil cone resistance due to cotton picker traffic during harvest on Australian cotton soils. Soil and Tillage Res. 140 (0), 29–39. DOI: 10.1016/j.still.2014.02.007.
  • Braun-Blanquet, J., 1964. Pflanzensoziologie. Wien, New York.
  • Bunzel-Drüke, M., Böhm, C., Finck, P., Kämmer, G., Luick, R., Reisinger, E., Riecken, U., Riedl, J., Scharf, M., Zimball, O., 2008. Wilde Weiden. Praxisleitfaden für Ganzjahresbeweidung in Naturschutz und Landschaftsentwicklung. Arbeitsgem. Biologischer Umweltschutz im Kreis Soest eV (ABU), Bad Sassendorf-Lohne.
  • Dec, D., Dörner, J., Balocchi, O., 2011. Temporal and spatial variability of structure dependent properties of a volcanic ash soil under pasture in southern Chile. Chilean J. of Agricultural Res. 71, 293–303.
  • Dec, D., Dörner, J., Balocchi, O., López, I., 2012. Temporal dynamics of hydraulic and mechanical properties of an Andosol under grazing. Soil and Tillage Res. 125, 44–51. DOI: 10.1016/j.still.2012.05.018.
  • DWD – Deutscher Wetterdienst, 2012. Langjährige Mittelwerte. https.//www.dwd.de/DE/leistungen/klimadatendeutschland/langj_mittelwerte.html?lsbId=343278 (access: 28.10.2016).
  • Dierßen, K., 1990. Einführung in die Pflanzensoziologie. Vegetationskunde. Darmstadt.
  • Donkor, N.T., Gedir, J.V., Hudson, R.J., Bork, E.W., Chanasyk, D.S., Naeth, M.A., 2002. Impacts of grazing systems on soil compaction and pasture production in Alberta. Can. J. Soil. Sci. 82 (1), 1–8. DOI: 10.4141/S01-008.
  • Duttmann, R., Brunotte, J., Bach, M., 2013. Spatial analyses of field traffic intensity and modeling of changes in wheel load and ground contact pressure in individual fields during a silage maize harvest. Soil and Tillage Res. 126 (0), 100–111. DOI: 10.1016/j.still.2012.09.001.
  • DWD, 2015. Pressemitteilungen zum Deutschlandwetter. http.//www.dwd.de/DE/presse/presseseite_node.html (access: 11.10.2016).
  • Elberse, W.T., van den Bergh, J.P., Dirven, J.G.P., 1983. Effects of use and mineral supply on the botanical composition and yield of grassland in heavy clay soil. Netherlands Journal of Agricultural Science, 31: 63–88.
  • Fischer, A., 1985. Ruderale Wiesen. Ein Beitrag zur Kenntnis des Arrhenatherion-Verbandes. Tuexenia 5: 237–248.
  • Frahm, J.-P., Frey, W., 2004. Moosflora. Stuttgart.
  • Gee, G.W., Bauder, J. W., Klute, A., 1986. Particle-size analysis. Methods of soil analysis. Part 1. Physical and mineralogical methods, 383-411.
  • Głąb, T., 2013. Effect of tractor traffic and N fertilization on the root morphology of grass/red clover mixture. Soil and Tillage Res. 134, 163–171. DOI: 10.1016/j.still.2013.08.004.
  • Głąb, T., Gondek, K., 2014. The influence of soil compaction and N fertilization on physico-chemical properties of Mollic Fluvisol soil under red clover/grass mixture. Geoderma 226–227, 204–212. DOI: 10.1016/j.geoderma.2014.02.021.
  • IUSS Working Group WRB, 2006. IUSS Working Group WRB, World reference base for soil resources. - World Soil Resources Reports 103, Rome, Food and Agriculture Organization.
  • Jäger, E. J., ed., 2011. Rothmaler – Exkursionsflora von Deutschland. Vol. 1-4. München.
  • Klapp, E., 1965. Grünlandvegetation und Standort. Berlin, p. 284.
  • Krause, B., 2014. Landscape change and impoverishment in North German grasslands since the 1950s. Dissertation University of Göttingen, Germany.
  • Krümmelbein, J., Peth, S., Horn, R., 2008. Determination of pre-compression stress of a variously grazed steppe soil under static and cyclic loading. Soil and Tillage Res. 99 (2), 139–148. DOI: 10.1016/j.still.2008.01.008.
  • Krümmelbein, J., Peth, S., Zhao, Y., Horn, R., 2009. Grazing-induced alterations of soil hydraulic properties and functions in Inner Mongolia, PR China. Z. Pflanzenernähr. Bodenk. 172 (6), 769–776. DOI: 10.1002/jpln.200800218.
  • Kuhwald, M., Blaschek, M., Minkler, R., Nazemtseva, Y., Schwanebeck, M., Winter, J., Duttmann, R., 2016. Spatial analysis of long-term effects of different tillage practices based on penetration resistance. Soil Use Manage 32(2), 240–249. DOI: 10.1111/sum.12254.
  • LLUR - Landesamt für Landwirtschaft, Umwelt und Ländliche Räume des Landes Schleswig-Holstein, 2006. Die Böden Schleswig-Holsteins. Entstehung, Verbreitung, Nutzung, Eigenschaften und Gefährdung. - Schriftenreihe LLUR SH – Geologie und Boden 11, Flintbek, LLUR, p. 108.
  • Ludvíková, V., Pavlů, V.V., Gaisler, J., Hejcman, M., Pavlů, L., 2014. Long term defoliation by cattle grazing with and without trampling differently affects soil penetration resistance and plant species composition in Agrostis capillaris grassland. Agriculture, Ecosystems and Environment 197 (0), 204–211. DOI: 10.1016/j.agee.2014.07.017.
  • Marrs, R.H., Snow, C.S.R., Owen, K.M., Evans, C.E., 1998. Heathland and acid grassland creation on arable soils at Minsmere. identification of potential problems and a test of cropping to impoverish soils. Biological Conservation 85(1), 69-82. DOI: 10.1016/S0006-3207(97)00139-0.
  • Martı́nez, L., Zinck, J., 2004. Temporal variation of soil compaction and deterioration of soil quality in pasture areas of Colombian Amazonia. Soil and Tillage Res. 75 (1), 3–18. DOI: 10.1016/j.still.2002.12.001.
  • Mládková, P., Mladek, J., Hejduk, S., Hejcman, M., Cruz, P., Jouany, C., Pakeman, R.J., 2015. High‐nature‐value grasslands have the capacity to cope with nutrient impoverishment induced by mowing and livestock grazing. Journal of Applied Ecology 52(4), 1073-1081. DOI: 10.1111/1365-2664.12464.
  • Oelmann, Y., Broll, G., Hölzel, N., Kleinebecker, T., Vogel, A., Schwartze, P., 2009. Nutrient impoverishment and limitation of productivity after 20 years of conservation management in wet grasslands of north-western Germany. Biological conservation, 142(12), 2941-2948. DOI: j.biocon.2009.07.021.
  • Oomes, M.J.M., 1990. Changes in dry matter and nutrient yields during the restoration of species‐rich grasslands. J. of Veg. Sc., 1(3), 333-338. DOI: 10.2307/3235708.
  • Pebesma, E.J., 2004. Multivariable geostatistics in S. the gstat package. Computer and Geosciences 30 (30), 683–691. DOI: 10.1016/j.cageo.2004.03.012.
  • Pebesma, E.J., Bivand, R.S., 2005. Classes and methods for spatial data. R. R News 5 (5(2)), 9–13.
  • Pott, R., 1995. Die Pflanzengesellschaften Deutschlands. Stuttgart.
  • R Core Team, 2014. A language and environment for statistical computing. R foundation for Statistical Computing, Vienna, Austria. URL. http.//www.R-project.org.
  • Riedel, W., Polensky, R., 1987. Umweltatlas für den Landesteil Schleswig, Flensburg. Deutscher Grenzverein.
  • Riedel, W., Heintze, U., 1987. Umweltarbeit in Schleswig-Holstein. Ein Leitfaden mit Grundinformation und Anleitungshilfen, Neumünster.
  • Riedel, W., Stolz, C., 2015. Monotonisierung von Landschaft - Nutzungswandel und Umweltfolgen des Biogasbooms am Beispiel Schleswig-Holsteins. Der Kritische Agrarbericht 23, 166-170.
  • Rowell, D.L., 1997. Bodenkunde - Untersuchungsmethoden und ihre Anwendungen, Heidelberg.
  • Salem, H.M., Valero, C., Muñoz, M.Á., Rodríguez, M.G., Silva, L.L., 2015. Short-term effects of four tillage practices on soil physical properties, soil water potential, and maize yield. Geoderma 237–238 (0), 60–70. DOI: 10.1016/j.geoderma.2014.08.014.
  • Schaller, K., 2008. Praktikum zur Bodenkunde und Pflanzenernährung. - Geisenheimer Berichte 2. Geisenheim.
  • Schott, C., 1956. Die Naturlandschaften Schleswig-Holsteins. Neumünster.
  • Schubert, R., Hilbig, W., Klotz, S., 2010. Bestimmungsbuch der Pflanzengesellschaften Deutschlands. Heidelberg.
  • Statistikamt Nord, 2016. Die Bodennutzung in Schleswig-Holstein. Endgültiges Ergebnis. Statistische Berichte CI1-j15SH, Hamburg, p. 55.
  • Stolz, C., Riedel, W., 2014. Die Anlage künstlicher Kleingewässer in Bezug auf Natur-, Landschafts- und Bodenschutz. – Naturschutz und Landschaftsplanung 46 (12), 370-376.
  • Strehl, E., 1999. Erläuterung zur geologischen Karte von Schleswig-Holstein 1.25.000, Blätter 1322/1323 Eggebek, Satrup. Flintbek. Landesamtes für Natur und Umwelt Schleswig-Holstein.
  • Usowicz, B., Lipiec, J., 2009. Spatial distribution of soil penetration resistance as affected by soil compaction. The fractal approach. Ecological Complexity 6 (3), 263–271. DOI: 10.1016/j.ecocom.2009.05.005.
  • Vermeer, J.G. and Berendse, F., 1983. The relationship between nutrient availability, shoot biomass and species richness in grassland and wetland communities. Vegetatio 53, 121–126. DOI: 10.1007/BF00043032.
  • Veronesi, F., Corstanje, R., Mayr, T., 2012. Mapping soil compaction in 3D with depth functions. Soil and Tillage Res. 124 (0), 111–118. DOI: 10.1016/j.still.2012.05.009.
  • Williams, E.D., 1978. The Botanical Composition of the Park Grass Plots at Rothamsted 1856–1976. Rothamsted Experimental Station, Harpenden.
  • Wilmanns, O., 1998. Ökologische Pflanzensoziologie. Wiesbaden.
  • Zhao, Y., Peth, S., Krümmelbein, J., Horn, R., Wang, Z., Steffens, M., Hoffmann, C., Peng, X., 2007. Spatial variability of soil properties affected by grazing intensity in Inner Mongolia grassland. Ecological Modelling 205 (1–2), 241–254. DOI: 10.1016/j.ecolmodel.2007.02.019.
  • Zoller, H., Haas, J.N., 1995. War Mitteleuropa ursprünglich eine halboffene Weidelandschaft oder von geschlossenen Wäldern bedeckt. Schweizerische Zeitschrift für Forstwesen 146(5), 321-354.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-3a6edca7-cd29-4f51-8c5d-1271ac65f661
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.