PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2018 | 58 | 3 |

Tytuł artykułu

Evaluation of selected parameters of photosynthesis as herbicide stress indicators on the example of glyphosate

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
This study was aimed at evaluating the effect of sublethal doses of glyphosate on physiological parameters of a common ornamental plant Mexican marigold (Tagetes erecta). The herbicide was applied in the following doses: 720 g ⋅ ha–1 (standard field dose), 144 g ⋅ ha–1, 28.8 g ⋅ ha–1, and 14.4 g ⋅ ha–1, in the form of a spraying treatment of plants in a specialist spraying chamber. The net assimilation rate and leaf greenness index were then determined. Herbicide application in the sublethal doses, i.e. below 720 g ⋅ ha–1, caused disorders in both analyzed physiological parameters of plants. The glyphosate dose of 144 g ⋅ ha–1 elicited transient disorders in the leaf greenness index. In turn, the use of the lower doses (28.8 g ⋅ ha–1 and 14.4 g ⋅ ha–1) caused a short-term increase in the net photosynthesis rate in the plants which was accompanied by a decreased value of the leaf greenness index. Study results demonstrated the effect of sublethal doses of glyphosate as a stress factor in parameters associated with the process of photosynthesis in plants.

Wydawca

-

Rocznik

Tom

58

Numer

3

Opis fizyczny

p.241-245,fig.,ref.

Twórcy

autor
  • Department of Horticulture, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
  • Department of Entomology, Phytopathology and Molecular Diagnostics, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
autor
  • Didactic-Experimental Center, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland

Bibliografia

  • Belz R.G., Leberle C. 2012. Low dose responses of different glyphosate formulations on plants. p. 427–434. In: Procedings of the 25th German Conference on Weed Biology and Weed Control, March 13–15, 2012, Braunschweig. 427–434. DOI:https://doi.org/10.5073/jka.2012.434.052
  • Blackmer T.M., Schepers J.S. 1995. Use of a chlorophyll meter to monitor nitrogen status and schedule fertigation for corn. Journal of Production Agriculture 8 (1): 55–60. DOI:https://doi.org/10.2134/jpa1995.0056
  • Cedergreen N., Olesen C.F. 2010. Can glyphosate stimulate photosynthesis? Pesticide Biochemistry and Physiology 96: 140–148. DOI: https://doi.org/10.1016/j.pestbp.2009. 11.002
  • Cedergreen N., Streibig J.C., Kudsk P., Mathiassen S.K., Duke S.O. 2007. The occurrence of hormesis in plant and algae. Dose-Response 5: 150–162. DOI: https://doi.org/10.2203/dose-response.06-008.Cedergreen
  • Chapman S.C., Baretto H.J. 1997. Using a chlorophyll meter to estimate specific leaf nitrogen of tropical maize during vegetative growth. Agronomy Journal 89 (4): 557–562. DOI: https://doi.org/10.2134/agronj1997.00021962008900040004x
  • De Carvalho L.B., da Costa Aguilar Alves P.L., Bianco S., de Prado R. 2012. Physiological dose-response of coffee (Coffea Arabica L.) plants to glyphosate depends on growth stage. Chilean Journal of Agricultural Research 72 (2): 182–187.DOI: https://doi.org/10.4067/s0718-58392012000200003
  • Duke S.O., Powles S.B. 2008. Glyphosate: a once-in-a-century herbicide. Pest Management Science 64 (4): 319–325. DOI: https://doi.org/10.1002/ps.1518
  • Franz J.E., Mao M.K., Sikorski J.A. 1997. Glyphosate: A Unique Global Herbicide. American Chemical Society, 653 pp.
  • Huang J., Silva E.N., Shen Z., Jtang B., Lu H. 2012. Effects of glyphosate on photosynthesis, chlorophyll fluorescence and physiochemical properties of cogongrass (Imperata cylindrical L.). Plant Omics Journal 5 (2): 177–183.
  • Ketel D.H. 1996. Effect of low doses of metamitron and glyphosate on growth and chlorophyll content of common lambsquarters (Chenopodium album). Weed Science 44 (1): 1–6.
  • Klevorn T.B., Wyse D.L. 1984. Effect of soil temperature, soil moisture, and transport system alteration on glyphosate and photoassimilate transport in quackgrass (Agropyron repens (L.) Beauv.). Weed Science 32 (3): 402–407.
  • Krenchinski F.H., Albrecht L.P., Albrecht A.J.P., Cesco V.J.S., Rodrigues D.M., Portz R.L., Zobiole L.H.S. 2017. Glyphosate affects chlorophyll, photosynthesis and water use of four Intacta RR2 soybean cultivars. Acta Physiologiae Plantarum 39 (2): 1–13. DOI: https://doi.org/10.1007/s11738-017-2358-0
  • Londo J.P., McKinney J., Schwartz M., Bollman M., Sagers C., Watrud L. 2014. Sub-lethal glyphosate exposure alters flowering phenology and causes transient male-sterility in Brassica spp. Plant Biology 14 (1): 1–10. DOI: https://doi.org/10.1186/1471-2229-14-70
  • Mateos-Naranjo E., Perez-Martin A. 2013. Effects of sublethal glyphosate concentrations on growth and photosynthetic performance of non-target species Bolboschoenus maritimus. Chemosphere 93 (10): 2631–2638. DOI: https://doi.org/10.1016/j.chemosphere.2013.09.094
  • Pokhrel L.R., Karsai I. 2015. Long-term sub-lethal effects of low concentration commercial herbicide (glyphosate/pelargonic acid) formulation in Bryophyllum pinnatum. Science of the Total Environment 538: 279–287. DOI: https://doi.org/10.1016/j.scitotenv.2015.08.052
  • Radwan D.E.M., Fayez K.A. 2016. Photosynthesis, antioxidant status and gas-exchange are altered by glyphosate application in peanut leaves. Photosynthetica 54 (2): 307–316.DOI: https://doi.org/10.1007/s11099-016-0075-3
  • Rubin J.L., Gaines C.G., Jensen R.A. 1984. Glyphosate inhibition of 5-enolpyruvylshikimate 3-phosphate synthase from suspension-cultured cells of Nicotiana sivestris. Plant Physiology 75 (3): 839–845. DOI: https://doi.org/10.1104/pp.75.3.839
  • Santin-Montanya M.I., Jimerez-Ruiz J., Vilan-Fragueiro X.M., Luquero-Ramos L., Ocana-Bueno L. 2013. Chlorophyll fluorescence technique to determine the effects of herbicides on Arundo donax L. Management of Biological Invasions 4 (4): 283–289. DOI: https://doi.org/10.3391/mbi.2013.4.4.03
  • Shikha Singh D.P. 2004. Influence of glyphosate on photosynthetic properties of wild type and mutant strains of cyanobacterium Anabaena doliolum. Current Science 86 (4): 571–576.
  • Silva F.B., Costa A.C., Alves R.R.P., Megguer C.A. 2014. Chlorophyll fluorescence as an indicator of cellular damage by glyphosate herbicide in Raphanus sativus L. plants. American Journal of Plant Sciences 5 (16): 2509–2519. DOI: http://dx.doi.org/10.4236/ajps.2014.516265
  • Wong P.K. 2000. Effects of 2,4-D, glyphosate and paraquat on growth, photosynthesis and chlorophyll-a synthesis of Scenedesmus quadricauda Berb 614. Chemosphere 41 (1–2): 177–182. DOI: https://doi.org/10.1016/s0045-6535(99)00408-7
  • Zhang T., Feng L., Tian X., Yang C., Gao J. 2015. Use of chlorophyll fluorescence and P700 absorbance to rapidly detect glyphosate resistance in goosegrass (Eleusine indica). Journal of Integrative Agriculture 14 (4): 714–723. DOI: https://doi.org/10.1016/s2095-3119(14)60869-8

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-3a4f58ec-c5a2-47ac-af3f-c5920f0f4bd4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.