PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2013 | 63 | 1 |

Tytuł artykułu

Mathematical modelling on hot air drying of thin layer fresh tilapia fillets

Autorzy

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The hot convective drying of fresh tilapia fillets was evaluated in a heat pump dryer. The influence of the drying temperature (35, 45 and 55°C), hot air velocity (1.50, 2.50 and 3.50 m/s) and thickness (3, 5 and 7 mm) of the tilapia fillets on the moisture ratio and drying rate has been studied. It shows that drying process took place in falling rate periods. The experimental drying data of fresh tilapia fillets under different conditions was fitted to nine different commonly used thin-layer drying models by nonlinear fitting methods and all the models were compared according to three statistical parameters, i.e. coefficient of determination, the reduced chi-square and the root mean square error. It was found that the coefficient of determination values of Page were higher than 0.99254, and the corresponding reduced chi-square and the root mean square error values were lower than 0.000632219 and 0.023854, respectively, indicating that the Page model is the best to describe drying curves of fresh tilapia fillets among them. Effective moisture diffusivity ranged from 6.55×10–10 to 1.23×10–9 m2/s calculated using the Fick’s second law. With the increase of the drying temperature and the hot air velocity, the effective moisture diffusivities Deff increased. The value of drying activation energy of tilapia fillets with thickness of 3 mm at hot air velocity 2.50 m/s was 17.66 kJ/mol, as determined from the slope of the Arrhenius plot, ln(Deff) versus 1/Ta.

Wydawca

-

Rocznik

Tom

63

Numer

1

Opis fizyczny

p.25-33,fig.,ref.

Twórcy

autor
  • Guangdong Institute of Petrochemical Technology, College of Chemistry and Life Science, Maoming 525000, P.R.China
autor
autor
autor

Bibliografia

  • 1. Aghbashlo M., Kianmehr M.H., Samimi-Akhijahani H., Influence of drying conditions on the effective moisture diffusivity, energy of activation and energy consumption during the thinlayer drying of berberis fruit (Berberidaceae). Energy Convers. Manage., 2008, 49, 2865–2871.
  • 2. Akgun N.A., Doymaz I., Modeling of olive cake thin-layer drying process. J. Food Eng., 2005, 68, 455–461.
  • 3. AOAC, Official Methods of Analysis. AOAC International, Maryland, USA. 2005.
  • 4. Bruce D.M., Exposed-layer barley drying, three models fitted to new data up to 150°C. J. Agric. Eng. Res., 1985, 32, 337–348.
  • 5. Corzo O., Bracho N., Alvarez C., Water effective diffusion coefficient of mango slices at different maturity stages during air drying. J. Food Eng., 2008, 87, 479–484.
  • 6. Diamante L.M., Munro P.A., Mathematical modeling of hot air drying of sweet potato slices. Int. J. Food Sci. Technol., 1991, 26, 99–109.
  • 7. Doungporn S., Poomsa-ad N., Wiset L., Drying equations of Thai Hom Mali paddy by using hot air, carbon dioxide and nitrogen gases as drying media. Food Bioprod. Process., 2012, 90, 187–198.
  • 8. Doymaz I., Evaluation of some thin-layer drying models of persimmon slices (Diospyros kaki L.). Energy Conv. Manag., 2012, 56, 199–205.
  • 9. Doymaz I., Ismail O., Drying characteristics of sweet cherry. Food Bioprod., Process., 2011, 89, 31–38.
  • 10. Figiel A., Dehydration of apples by a combination of convective and vacuum-microwave drying. Pol. J. Food Nutr. Sci., 2007, 57, 131–135.
  • 11. Henderson S.M., Pabis S., Grain drying theory. II. Temperature effects on drying coefficients. J. Agric. Eng. Res., 1961, 6, 169–174.
  • 12. Henderson S.M., Progress in developing the thin layer drying equation. Transactions of ASAE, 1974, 17, 1167–1172.
  • 13. Kituu G.M., Shitanda D., Kanali C.L., Mailutha J.T., Njoroge C.K., Wainaina J.K., Silayo V.K., Thin layer drying model for simulating the drying of Tilapia fish (Oreochromis niloticus) in a solar tunnel dryer. J. Food Eng., 2010, 98, 325–331.
  • 14. Li J., Li B.S., Li W., Study on tilapia pickling technique. Modern Food Sci. Technol., 2009, 25, 646–649.
  • 15. Lomauro C.J., Bakshi A.S., Labuza T.P., Moisture transfer properties of dry and semimoist foods. J. Food Sci., 1985, 50, 397–400.
  • 16. Madamba P.S., Driscoll R.H., Buckle K.A., The thin-layer drying characteristics of garlic slices. J. Food Eng., 1996, 29, 75–97.
  • 17. Meisami-asl E., Rafiee S., Keyhani A., Tabatabaeefar A., Drying of apple slices (var. Golab) and effect on moisture diffusivity and activation energy. Plant Omics, 2010, 3, 97–102.
  • 18. Orikasa T., Wu L., Shiina T., Tagawa A., Drying characteristics of kiwifruit during hot air drying. J. Food Eng., 2008, 85, 303– –308.
  • 19. Page G.E., Factors influencing the maximum rates of air drying shelled corn in thin layers. 1949, M.S. Thesis. Department of Mechanical Engineering, Purdue University, Purdue, USA.
  • 20. Rafiee S., Sharifi M., Keyhani A., Omid M., Jafari A., Mohtasebi S.S., et al., Modeling effective moisture diffusivity of orange slices (Thompson Cv.). Int. J. Food Prop., 2010, 13, 32–40.
  • 21. Sanjuan N., Lozano M., Garcia-Pascal P., Mulet A., Dehydration kinetics of red pepper (Capsicum annuum L. var. Jaranda). J. Sci. Food Agric., 2003, 83, 697–701.
  • 22. Shitanda D., Wanjala N.V., Effect of different drying methods on the quality of jute (Corchorus olitorius L.). Drying Technol., 2006, 24, 95–98.
  • 23. Tajner-Czopek A., Figiel A., Lisińska G., Effect of pre-drying method on quality and mechanical properties of French fries. Pol. J. Food Nutr. Sci., 2007, 57, 555–562.
  • 24. Togrul I.T., Pehlivan D., Mathematical modeling of solar drying of apricots in thin layers. J. Food Eng., 2002, 55, 209–216.
  • 25. Tunde-Akintunde T.Y., Ogunlakin G.O., Influence of drying conditions on the effective moisture diffusivity and energy requirements during the drying of pretreated and untreated pumpkin. Energy Conv. Manag., 2011, 52, 1107–1113.
  • 26. Tutuncu M.A., Labuza T.P., Effect of geometry on the effective moisture transfer diffusion coefficient. J. Food Eng., 1996, 30, 433–447.
  • 27. Vega-Galvez A., Andres A., Gonzalez E., Notte-Cuello E., Chacana M., Lemus-Mondaca R., Mathematical modelling on the drying process of yellow squat lobster (Cervimunida jhoni) fishery waste for animal feed. Animal Feed Sci. Technol., 2009, 151, 268–279.
  • 28. Wang C.Y., Singh R.P., Use of variable equilibrium moisture content in modeling rice drying. Transactions of ASAE, 1978, 11, 668–672.
  • 29. Yaldiz O., Ertekin C., Uzun H.I., Mathematical modeling of thin layer solar drying of sultana grapes. Energy, 2001, 26, 457–465.
  • 30. Zaremba R., Jaros M., Theoretical model for fluid bed drying of cut celery. Pol. J. Food Nutr. Sci., 2007, 57, 211–214.
  • 31. Zogzas N.P., Maroulis Z.B., Marinos-Kouris D., Moisture diffusivity data compilation in foodstuffs. Drying Technol., 1996, 14, 2225–2253.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-3995eef1-8297-496d-9cc1-efa9aafd43b3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.