PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2016 | 25 | 4 |

Tytuł artykułu

Ground sediment transport model and numerical simulation

Autorzy

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Geological disasters caused by city ground subsidence are typical examples of soil failure, which significantly impact urban planning and development. The sediment transport in the soils leads to the increasing porosity of soils, and changes the elastic modulus and Poisson’s ratio, thus the carrying capacity of the soil is reduced and ground subsidence appears. Therefore, the sediment transfer and loss driven by the underground water becomes a key reason for ground subsidence. Studies in this area thus present significant meanings. In this paper, mutual effects between the sediment particles and groundwater seepage are analyzed. We partially fix sediments in soils. Using the numerical simulation, hydraulic pressure is applied to scour so as to study the regular patterns of sediment transport in the soil mass: as time extended, the porosity in soils is gradually enlarged, tending to be stable; as more particles are fixed, porosity is reduced. It is also found that fixed particles, with a part of free sediment particles, form some new fixed sediment structures that hinder the transfer of the free sediment. In addition, parameters like scour time, hydraulic pressure, and the porosity evolution equation relating to the amount of fixed sediment particles are acquired. Findings of this research are expected to provide references for predicting, forecasting, and treating ground subsidence, which is led by sediment transport from the perspective of the soil mass porosity evolution.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

25

Numer

4

Opis fizyczny

p.1691-1697,fig.,ref.

Twórcy

autor
  • School of Water Resources and the Environment, China University of Geosciences, Beijing, 100083, China
  • Department of Civil & Environmental Engineering, University of Wisconsin, Milwaukee 53211, United States

Bibliografia

  • 1. Sun J.C, Wang G.O., Riverbank Collapse Mechanism Under Scouring. VDM Publishing House Germany, 2010.
  • 2. SUN J. The phenomenon of the floating riverbank collapse by water scouring. International Journal of Ground Sediment and Water. 1 (1), 5, 2014.
  • 3. SUN J. Three Stages Collapse Connection of Riverbank. International Journal of Ground Sediment and Water. 1 (1), 1, 2014.
  • 4. Arekhi S., Nia zi Y., Kalteh A.M. Soil erosion and sediment yield modeling using RS and GIS techniques: a case study, Iran. Arabian Journal of Geosciences, 5 (2), 285, 2012.
  • 5. Bishop M.A. Aeolian scours as putative signatures of wind erosion and sediment transport direction on Mars. Geomorphology, 125 (4), 569, 2011.
  • 6. Wang g., et al., Underground sand erosion model experimental apparatus. China Patent, 2010.
  • 7. Sun J., Wang G., Transport Model of Underground Sediment in Soils. Scientific World Journal, 1, 2013.
  • 8. Wang G., et al., An underground sand erosion model experimental apparatus and method. China Patent, 2011.
  • 9. SUN J. Mathematical model coupling seepage and sedimentation of solid particles in porous media. Fresenius Environmental Bulletin, 24 (5), 1735, 2015.
  • 10. SUN J. Experimental device and test methods of the interaction wind sand and groundwater. Patent. 2015.
  • 11. SUN J. Simulation test device for the crack block and dredge effect by ground sediment. China, Patent. 2013.
  • 12. Tian Y.A., et al., Transport of engineered nanoparticles in saturated porous media. Journal of Nanoparticle Research, 12 (7), 2371, 2010.
  • 13. Ben -Moshe T., Dror I., Berkowit z B. Transport of metal oxide nanoparticles in saturated porous media. Chemosphere, 81 (3), 387, 2010.
  • 14. Chowdhury I., et al., Mechanisms of TiO2 nanoparticle transport in porous media: Role of solution chemistry, nanoparticle concentration, and flowrate. Journal of Colloid and Interface Science, 360 (2), 548, 2011.
  • 15. Sen T.K., Khilar K.C. Review on subsurface colloids and colloid-associated contaminant transport in saturated porous media. Advances in Colloid and Interface Science, 119 (2-3), 71, 2006.
  • 16. Sen T.K., Mahajan S.P., Khilar K.C. Colloidassociated contaminant transport in porous media: 1. Experimental studies. Aiche Journal, 48 (10), 2366, 2002.
  • 17. Auset M., Keller A.A. Pore-scale processes that control dispersion of colloids in saturated porous media. Water resources research, 40 (3), 2004.
  • 18. Baek I.. Pitt W.W. Colloid-facilitated radionuclide transport in fractured porous rock. Waste Management, 16 (4), 313, 1996.
  • 19. Airey P.L. Radionuclide Migration around Uranium Ore Bodies in the Alligator Rivers Region of the Northern-Territory of Australia – Analog of Radioactive-Waste Repositories – a Review. Chemical Geology, 55 (3-4), 255, 1986.
  • 20. Yao H.Y., Zhang Z.H. Numerical Analysis of Saturatedunsaturated Seepage Problem of Anisotropic Permeability Slope under Rainfall Infiltration. Flow in Porous Media - from Phenomena to Engineering and Beyond, ed. J. Liu, H. Zhang, and X.G. Liu., Marrickville: Orient Acad Forum. 1002, 2009.
  • 21. SUN J.C., WANG G.Q., SUN Q.C. Crack spacing of unsaturated soils in the critical state. Chinese Science Bulletin. 54 (12), 2008, 2009.
  • 22. SUN J.C., GAO Q.C., WANG H.B., LI Y.M. Numerical simulation of coupled rainfall and temperature of unsaturated soils. Key Engineering Materials. 306-308 (2), 1433, 2006.
  • 23. Gabet E.J., Sternberg P. The effects of vegetative ash on infiltration capacity, sediment transport, and the generation of progressively bulked debris flows. Geomorphology, 101 (4), 666, 2008.
  • 24. Haynes H., Vignaga E., Holmes W.M. Using magnetic resonance imaging for experimental analysis of fine-sediment infiltration into gravel beds. Sedimentology, 56 (7), 1961, 2009.
  • 25. Roberge P.R. Polymeric Materials for Underground Piping and Related Systems. Materials Performance, 49 (1), 80, 2010.
  • 26. Terzaghi K., Der Grundbruch an Stauwerken und seine Verhuetung. Die Wasserkraft, 17, 445, 1922.
  • 27. Bazant Z. Measuring soil deformation caused by the pressure of the seepage. in 17th International Navigation Congress. Lisbon. 1949.
  • 28. Sentko M. Der Zeitliche Ablouf des Schwimmsand aufbruches und der Einfluss der geometrischen Anordung der Baugrubenumschliess ungen auf das kritische Gefaelle, in Veroffentlichungen Institu fuer Bodenmechanik. Technische Hochschule: Karsruhe, 1961.
  • 29. Babu G.L.S., Vasudevan A.K. Seepage Velocity and Piping Resistance of Coir Fiber Mixed Soils. Journal of irrigation and drainage engineering, 134 (4), 485, 2008.
  • 30. Skempton A.W., Brogan J.M. Experiments on piping in sandy gravels. Geotechnique, 44 (3), 449, 1994.
  • 31. Wan C.F., Fell R. Laboratory tests on the rate of piping erosion of soils in embankment dams. ASTM geotechnical testing journal, 27 (3), 295, 2004.
  • 32. Indraratna B., Radampola S. Analysis of critical hydraulic gradient for particle movement in filtration. Journal of Geotechnical and Geoenvironmental Engineering, 128 (4), 347, 2002.
  • 33. Xia J.q., et al., An analysis of soil composition and mechanical properties of riverbanks in a braided reach of the Lower Yellow River. Chinese Science Bulletin, 53 (15), 2400, 2008.
  • 34. Yi C., et al., Two-dimensional simulation of underground seepage in a dangerous piping zone of the Jingjiang Great Levee, the middle reach of the Yangtze River. Quarterly Journal of Engineering Geology and Hydrogeology, 40 (1), 85, 2007.
  • 35. Sharma R.H., Konietzky H., Kosugi K. Numerical analysis of soil pipe effects on hillslope water dynamics. Acta Geotechnica, 5 (1), 33, 2010.
  • 36. Bouillard J., Lyczkowski R., Gidaspow D. Porosity distributions in a fluidized bed with an immersed obstacle. Aiche Journal, 35 (6), 908, 1989.
  • 37. Ergun S. Fluid flow through packed columns. Chem. Eng. Prog., 48, 1952.
  • 38. Christopher . R.H., Middleman S. Power-law flow through a packed tube. Industrial & Engineering Chemistry Fundamentals, 4 (4), 422, 1965.
  • 39. Meyer B.R., Bazan L.W., Walls D. Modeling of Proppant Permeability and Inertial Factor for Fluid Flow Through Packed Columns. Effective and Sustainable Hydraulic Fracturing. 2013.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-398f172b-f2bb-40de-b2d3-47fff7a0934d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.