PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2019 | 28 | 4 |
Tytuł artykułu

Characterization and optimization of photocatalytic activity of sol gel-synthesized TiO2 and Ag-doped TiO2 through degradation of synthetic textile effluent by UV lamp-assisted experimental setup

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The textile industry is one of the largest producers of harmful effluent, and this has become a serious threat to the environment when disposed of into water bodies, which may lead to high pollution risk – especially in developing countries. There are several treatment methods ranging from conventional to advanced for treating textile effluent before disposal in the environment. Photocatalytic oxidation (AOPs) is the most sophisticated process among all other advanced oxidation processes. In this study, TiO2 and Ag-doped TiO2 were used for the photcatalytic degradation of synthetic textile effluent. TiO2 and Ag-doped TiO2 catalyst were synthesized through two routes of sol-gel method (M1 and M2 reported in our previous study) for mobilized and immobilized utilization purposes [1], and characterization of the catalysts was carried out through X-ray diffrectrometric analysis. XRD patterns showed that catalysts synthesized by both routs of sol-gel method were initially found in amorphous form as no peak appeared in an X-ray diffractrogram at 0ºC calcination (catalyst without calcinations), whereas with an increase of temperature the amorphous form of catalyst turned into crystalline. Results showed that TiO2 synthesized by the sol-gel route showed anatase phase at 350ºC, and peaks kept growing until 550ºC. Furthermore, at 650-750ºC anatase and rutile co-exist, while in Ag-doped TiO2, anatase appeared at 350-450ºC and at 550ºC anatase phase/silver co-existed, whereas at 650-750ºC anatse-silver-rutile co-existed. An X-ray diffractrogram showed that catalyst synthesized through the 2nd sol-gel route also possessed an amorphous nature at 350ºC and peaks of anatase phase of TiO2 appeared at 450ºC and kept growing sharper as temperature increased from 450-750ºC, whereas anatase peaks detected at 350ºC in Ag-TiO2, and anatase-silver co-existed at 450ºC and 550ºC. Hence, anatase disappearedand only silver metal peaks remained at 650-750°C. Degradation and decolorization results revealed that optimum photocatalytic activity was achieved by catalysts calcinated at 550ºC as 91.96% degradation (COD removal %) with Ag-doped TiO2 immobilized catalyst, and 99.57% decolorization (colour removal percentage) was achieved with Ag-doped TiO2 mobilized catalyst on 60 min treatment of synthetic textile effluent (Remazol red RGB: 10 ppm concentration, pH3). Results showed that Ag-doped TiO2 developed anatase crystalline phase at 550ºC that favored degradation and decolourization. The order of catalyst calcination at 550°C with respect to degradation was found as Ag-TiO2 (immobilized) > Ag-TiO2 (mobilized) > TiO2 (mobilized) > TiO2 (immobilized) and decolourization found as Ag-TiO2 (mobilized) >Ag-TiO2(immobilised)> TiO2 (immobilized) > TiO2 (mobilized).
Słowa kluczowe
EN
Wydawca
-
Rocznik
Tom
28
Numer
4
Opis fizyczny
p.2571-2583,fig.,ref.
Twórcy
autor
  • College of Earth and Environmental Sciences, University of the Punjab, Lahore, Pakistan
  • Department of Science Education (IER), University of the Punjab, Lahore, Pakistan
autor
  • Institute of Geology, University of the Punjab, Lahore, Pakistan
autor
  • College of Earth and Environmental Sciences, University of the Punjab, Lahore, Pakistan
Bibliografia
  • 1. AKRAM T.M., AHMAD N., SHAIKH I.A. Photocatalytic degradation of synthetic textile effluent by modified sol-gel, synthesized mobilized and immobilized TiO2, and Ag-doped TiO2. Polish Journal of Environmental Studies, 25 (4), 2016.
  • 2. VILLEGAS-NAVARRO A., RAMIREZ M.Y., SALVADOR M.S.S.B., GALLARDO J.M. Determination of wastewater LC50 of the different process stages of the textile industry, Ecotoxicology Environmental Safety, 48 (1), 56, 2001.
  • 3. MERIÇ S., SELCUK H., BELGIORNO V. Acute toxicity removal in textile finishing wastewater by Fenton’s oxidation, ozone and coagulation-flocculation processes, Water Research, 39 (6), 1147, 2005.
  • 4. SHARMA K.P., SHARMA S., SINGH P., KUMAR S., GROVER R., SHARMA P.K. A comparative study on characterization of textile wastewaters (untreated and treated) toxicity by chemical and biological tests, Chemosphere, 69 (1), 48, 2007.
  • 5. GÜMÜŞ D., AKBAL F. Photocatalytic degradation of textile dye and wastewater. Water, air, and soil pollution, 216 (1-4), 117, 2011.
  • 6. KHAN S., MALIK A. Environmental and health effects of textile industry wastewater, Environmental deterioration and human health, 55, 2014.
  • 7. KULKARNI M., THAKUR, P. photocatalytic degradation of real textile industrial effluent under uv light catalyzed by metal oxide nanoparticles. Nepal Journal of Science and Technology, 15 (2), 105, 2015.
  • 8. MONDAL C., BHAGCHANDANI G. Novel effluent treatment technique in textile industry, International journal of advance research and innovative ideas in education , 2 (3), 2395, 2016.
  • 9. ALATON I.A., BALCIOGLU I.A., BAHNEMANN D.W. Advanced oxidation of a reactive dyebath effluent: comparison of O3, H2O2/UV-C and TiO2/UV-A processes. Water Research, 36 (5), 1143, 2002.
  • 10. PAMECHA K., MEHTA V. KABRA B.V. Photocatalytic degradation of commercial textile azo dye reactive blue 160 by heterogeneous Photocatalysis, 7 (3), 95, 2016.
  • 11. DE MORAES S.G., FREIRE R.S., DURAN N. Degradation and toxicity reduction of textile effluent by combined photocatalytic and ozonation processes. Chemosphere, 40 (4), 369, 2000.
  • 12. MAHMOODI N.M., ARAMI M., LIMAEE N.Y., GHARANJIG K., ARDEJANI F.D. Decolorization and mineralization of textile dyes at solution bulk by heterogeneous nanophotocatalysis using immobilized nanoparticles of titanium dioxide. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 290 (1), 125, 2006.
  • 13. PEKAKIS P.A., XEKOUKOULOTAKIS N.P., MANTZAVINOS D. Treatment of textile dyehouse wastewater by TiO2 photocatalysis. Water research, 40 (6), 1276, 2006.
  • 14. MARTINS A.F. WILDE M.L., DA SILVEIRA C. Photocatalytic degradation of Brilliant Red dye and textilewastewater, Journal of Environmental Science and Health, Part A: Toxic/Hazardous Substances and Environmental Engineering, 41 (4), 675, 2006.
  • 15. ALINSAFI A., EVENOU F., ABDULKARIM E.M., PONS M.N., ZAHRAA O., BENHAMMOU A., YAACOUBI A., NEJMEDDINE A. Treatment of textile industry wastewater by supported photocatalysis, Dyes and Pigments, 74 (2), 439, 2007.
  • 16. PARK H., KIM H.I., MOON G.H., CHOI W. Photoinduced charge transfer processes in solar photocatalysis based on modified TiO2. Energy & Environmental Science, 9 (2), 411, 2016.
  • 17. POKHARNA S., SHRIVASTAVA R. Photocatalytic treatment of textile industry effluent using titanium oxide. Int. J. Recent Res. Rev, 2, 9, 2013.
  • 18. LIMA C.S., BATISTA K.A., RODRÍGUEZ A.G., SOUZA J.R., FERNANDES K.F. Photodecomposition and color removal of a real sample of textile wastewater using heterogeneous photocatalysis with polypyrrole, Solar Energy, 114, 105, 2015.
  • 19. XIAOBO C. SAMUEL S.M. Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. Chem. Rev. 107 (7), 2891, 2007.
  • 20. YU J., JARONIEC M., YU H., FAN W. Synthesis, characterization, properties, and applications of nanosized photocatalytic materials. Journal of Nanomaterials. Article ID 783686, 3 (17), 2012.
  • 21. SAMIRA S. Photocatalytic Degradation of Crystal Violet (CI Basic Violet 3) on Nano TiO2 Containing Anatase and Rutile Phases (3: 1). Journal of Thermodynamics & Catalysis, 2012, 2013.
  • 22. BAGHERI S., RAMIMOGHADAM D., YOUSEFI A. T., HAMID S.B.A. Synthesis, Characterization and Electrocatalytic Activity of Silver Doped-Titanium Dioxide Nanoparticles. Int. J. Electrochem. Sci, 10, 3088, 2015.
  • 23. PHOOHINKONG W., MEKPRASART W., PECHARAPA W. Photocatalytic performance of Anatase/Rutile TiO2 composite against different organic dyes, Journal of Science and Technology, 8 (1), 170, 2016.
  • 24. LI Y., XU H., OUYANG S., YE J. Metal – organic frameworks for photocatalysis. Physical Chemistry Chemical Physics, 18 (11), 7563, 2016.
  • 25. IBRAHIM S.A., SREEKANTAN S. Effect of pH on TiO2 nanoparticles via sol-gel method. Advanced Materials Research, 173, 184, 2011.
  • 26. KAUR R., PAL B. Co-catalysis effect of different morphological facets of as prepared Ag nanostructures for the photocatalytic oxidation reaction by Ag-TiO2 aqueous slurry. Materials Chemistry and Physics, 143 (1), 393, 2013.
  • 27. YUDOYONO G., ZHARVAN V., ICHZAN N., DANIYATI R., INDARTO B., PRAMONO Y.H., MOCHAMAD Z., DARMINTO. Influence of pH on the formulation of TiO2 powder prepared by co-precipitation of TiCl3 and photocatalytic activity. In A. Purwanto, A. Nur, & F. Rahmawati (Eds.), AIP Conference Proceedings (Vol. 1710, No. 1, p. 030011). AIP Publishing, 2016.
  • 28. DEVI G.S., KUMAR K.S., REDDY K.S. Effect of pH on Synthesis of Single-Phase Titania (TiO2) Nanoparticles and its Characterization. Particulate Science and Technology, 33 (3), 219, 2015.
  • 29. GRIBB A.A., AND BANFIELD F.J. Particle size effects on transformation kinetics and phase stability in nanocrystalline TiO2, American Mineralogist, 82, 717, 1997.
  • 30. Li B.R., Wang X.H., Yan M., Li L.T. Preparation and characterization of nano-TiO2 powder. Engineering Materials 224, 577, 2002.
  • 31. MEHRIZAD A., GHARBANI P., TABATABII M.S. Synthesis of nanosized TiO2 powder by sol-gel method in acidic conditions, Journal of the Iranian Chemical Research, 2, 145, 2009.
  • 32. Maeda K., Domen K. Photocatalytic water splitting: recent progress and future challenges. The Journal of Physical Chemistry Letters, 1 (18), 2655, 2010.
  • 33. MUNUSAMY S., SAI R. AXMI APARNA A., PRASAD G.S.V.R. Photocatalytic effect of TiO2 and the effect of dopants on degradation of brilliant green, Sustainable chemical processes, 1, 4, 2013.
  • 34. Muuronen M., PARKER S.M., BERARDO E., LE A., ZWIJNENBURG M.A., FURCHE F. Mechanism of photocatalytic water oxidation on small TiO2 nanoparticles. Chemical Science, 2017.
  • 35. WANG G., XU L., ZHANG J., YIN T., HAN D. Enhanced photocatalytic activity of powders (P25) via calcination treatment. International Journal of Photoenergy, 2012.
  • 36. CAI J., XIN W., LIU G., LIN D., ZHU D. Effect of calcination temperature on structural properties and photocatalytic activity of Mn-C-codoped TiO2, Materials Research, 19 (20), 4, 2016.
  • 37. LEE D.K., KIM S.C., CHO I.C., KIM S.J., KIM S.W. Photocatalytic oxidation of microcystin-LR in a fluidized bed reactor having TiO2-coated activated carbon. Sep. Purif. Technol. 34, 59, 2004.
  • 38. Sabry R.S., Al-Haidarie Y.K., Kudhier M.A. Synthesis and photocatalytic activity of TiO2 nanoparticles prepared by sol-gel method. Journal of Sol-Gel Science and Technology, 78 (2), 299, 2016.
  • 39. CARRERA-LÓPEZ R. Effect of the phase composition and crystallite size of sol-gel TiO2 nanoparticles on the acetaldehyde photodecomposition. Superficies y Vacío, 25 (2), 82, 2012.
  • 40. JARAMILLO J., GARZÓN B.A., MEJÍA L.T. Influence of the pH of the synthesis using sol-gel method on the structural and optical properties of TiO2. Journal of Physics: Conference Series, 687 (1), 012099, 2016.
  • 41. KOKILA P., RAMESHBABU M., SENTHILKUMAR V. Effects of Calcination Temperature, pH and Irradiation time on Photocatalytic Activity of Pure and Doped Titanium Dioxide Nanopowders , International Journal of Modern Science and Technology, 1 (7), 250, 2016.
  • 42. WANG Q., JIANG Z., WANG Y., CHEN D., YANG D. Photocatalytic properties of porous C-doped TiO2 and Ag/C-doped TiO2 nanomaterials by eggshell membrane templating. J. Nanopart. Res., 11, 375, 2009.
  • 43. SU C., HONG B.Y., TSENG C.M. Sol-Gel Preparation and Photocatalysis of Titanium Dioxide. Catalysis Today, 96, 119, 2004.
  • 44. SEERY K.S., GEORGE R., FLORIS P., PILLAI S.C. Silver doped titanium dioxide nanomaterials for enhanced visible light photocatalysis. J. Photochem. Photobiol. A: Chem., 189, 258, 2007.
  • 45. NEPPOLIAN B., EDDY D.R.. SAKAI S., OKADA Y., NISHIJIMA H., ANPO M. Preparation of TiO2 nanoparticle photocatalysts by a multi-gelation method: the effect of pH change, Research on Chemical Intermediates, 34 (1), 103, 2008.
  • 46. HENDRIX Y., LAZARO A., YU Q., BROUWERS J. Titania-Silica Composites: A review on the photocatalytic activity and synthesis methods, World Journal of Nano Science and Engineering, 5, 161, 2015.
  • 47. 47. Marathe S.D., Shrivastava S.V. Synthesis of nano sized TiO2 and its application in photocatalytic removal of methylene blue, Pelagia research library advances in applied science research, 4 (6), 212, 2013.
  • 48. CARNEIRO J.T., SAVENIJE T.J., MOULIJN J.A., MUL G. Toward a physically sound structure − activity relationship of TiO2-based photocatalysts. The Journal of Physical Chemistry C, 114(1), 327, 2009.
  • 49. AHMADI M., GHASEMI M.R., RAFSANJANI H.H. Study of different parameters in TiO2 nanoparticles formation. Journal of Materials Science and Engineering, 5 (1), 87, 2011.
  • 50. YU J-G., HUO-GEN YU, H-G., CHENG B., ZHAO X-J., YU C.J., HO W-K. the effect of calcination temperature on the surface microstructure and photocatalytic activity of TiO2 thin films prepared by liquid phase deposition, J. Phys. Chem. B, 107 (50), 13871, 2003.
  • 51. WETCHAKUN N., INCESSUNGVORN B., WETCHAKUN K., PHANICHPHANT S. Influence of calcination temperature on anatase to rutile phase transformation in TiO2 nanoparticles synthesized by the modified sol-gel method, Materials Letters, 82, 195, 2012.
  • 52. Chen Y.F., LEE C.Y., YENG M.Y., CHIU H.T. The effect of calcination temperature on the crystallinity of TiO2 nanopowders. Journal of crystal growth, 247 (3), 363, 2003.
  • 53. APHA. Standard Methods for the examination of water and wastewater. American Public Health Association (APHA), Washington D.C., 20th Edition, 1998.
  • 54. TAYADE R.J., SUROLIA P.K., KULKARNI R.G., JASRA R.V. Photocatalytic degradation of dyes and organic contaminants in water using nanocrystalline anatase and rutile TiO2. Science and Technology of Advanced Materials, 8(6), 455, 2007.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-397a6853-3182-43f3-a624-4ef791481cee
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.