PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2010 | 32 | 3 |

Tytuł artykułu

Characterization of trophic changes and a functional oxidative pentose phosphate pathway in Synechocystis sp. PCC 6803

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Cyanobacteria have a tremendous activity to adapt to environmental changes of their growth conditions. In this study, Synechocystis sp. PCC 6803 was used as a model organism to focus on the alternatives of cyanobacterial energy metabolism. Glucose oxidation in Synechocystis sp. PCC6803 was studied by inactivation of slr1843, encoding glucose-6-phosphate dehydrogenase (G6PDH), the first enzyme of the oxidative pentose phosphate pathway (OPPP). The resulting zwf strain was not capable of glucose supported heterotrophic growth. Growth under autotrophy and under mixotrophy was similar to that of the wild-type strain, even though oxygen evolution and uptake rates of the mutant were decreased in the presence of glucose. The organic acids citrate and succinate supported photoheterotrophic growth of both WT and zwf. Proteome analysis of soluble and membrane fractions allowed identification of four growth condition-dependent proteins, pentose-5-phosphate 3-epimerase (slr1622), inorganic pyrophosphatase (sll0807), hypothetical protein (slr2032) and ammonium/methylammonium permease (sll0108) revealing details of maintenance of the cellular carbon/nitrogen/phosphate balance under different modes of growth.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

32

Numer

3

Opis fizyczny

p.511-518,fig.,ref.

Twórcy

autor
  • Laboratory of Plant Physiology and Molecular Biology, Department of Biology, University of Turku, 20014 Turku, Finland
autor
  • Henry Wellcome Laboratory for Biogerontology Research, Newcastle University, Newcastle Upon Tyne NE4 6BE, UK
autor
  • Department of Veterinary Technology, Faculty of Veterinary Technology, Kasetsart University, 50 Phahon Yothin Rd, Chatuchak, Bangkok 10900, Thailand
autor
  • Department of Biology, California State University, Northridge, CA 91330-8303, USA
  • Department of Biology, California State University, Northridge, CA 91330-8303, USA
autor
  • Laboratory of Plant Physiology and Molecular Biology, Department of Biology, University of Turku, 20014 Turku, Finland

Bibliografia

  • Bennet A, Bogorad L (1973) Complementary chromatic adaption in filamentous blue-green alga. J Cell Biol 58:419–4435
  • Cogne G, Gros JB, Dussap CG (2003) Identification of a metabolic network structure representative of Arthrospira (Spirulina) platensis metabolism. Biotechnol Bioeng 84:667–676
  • Cooley JV, Vermaas WFJ (2001) Succinate dehydrogenase and other respiratory pathways in thylakoid membranes of Synechocystis sp. strain PCC 6803: capacity comparisons and physiological functions. J Bacteriol 183:4251–4258
  • DeRuyter YA, Fromme P (2008) Molecular structure of the photosynthetic apparatus. In: Herrero A, Flores E (eds) The cyanobacteria molecular biology, genomics and evolution. Caister Academic Press, Norfolk, pp 217–269
  • Flores E, Frías JE, Rubio LM, Herrero A (2005) Photosynthetic nitrate assimilation in cyanobacteria. Photosynth Res 83: 117–133
  • Forti G, Meyer EM (1969) Effect of pyrophosphate on photosynthetic electron transport reactions. Plant Physiol 44:1511–1514
  • Gomez-Garcia MR, Losada M, Serrano A (2003) Concurrent transcriptional activation of ppa and ppx genes by phosphate deprivation in the cyanobacterium Synechocystis sp. strain PCC 6803. Biochem Biophys Res Commun 302:601–609
  • Grossman A, McGowan RE (1975) Regulation of glucose 6-phosphate dehydrogenases in blue-green algae. Plant Physiol 55:658–662
  • Herranen M, Battchikova N, Zhang PP, Graf A, Sirpiö S, Paakkarinen V, Aro EM (2004) Towards functional proteomics of membrane protein complexes in Synechocystis sp. PCC 6803. Plant Physiol 134:470–481
  • Ikeuchi M, Tabata S (2001) Synechocystis sp. PCC 6803—a useful tool in the study of the genetics of cyanobacteria. Photosynth Res 70:73–83
  • Knowles VL, Plaxton WC (2003) From genome to enzyme: analysis of key glycolytic and oxidative pentose phosphate pathway enzymes in the cyanobacterium Synechocystis sp. PCC 6803. Plant Cell Physiol 44:758–763
  • Kurian D, Jansén T, Mäenpää P (2006) Proteomic analysis of heterotrophy in Synechocystis sp. PCC 6803. Proteomics 6:1483–1494
  • Montesinos ML, Muro-Pastor AL, Herrero A, Flores E (1998) Ammonium/methylammonium permeases of a cyanobacterium, identification and analysis of three nitrogen-regulated amt genes in Synechocystis sp. PCC 6803. J Biol Chem 273:31463–31470
  • Murata N, Suzuki I (2006) Exploitation of genomic sequences in a systematic analysis to access how cyanobacteria sense environmental stress. J Exp Bot 57:235–247
  • Pelroy RA, Bassham JA (1972) Photosynthetic and dark carbon metabolism in unicellular blue-green algae. Arch Microbiol 86:303–332
  • Prentki P, Krisch HM (1984) In vitro insertional mutagenesis with a selectable DNA fragment. Gene 29:303–313
  • Rippka R (1972) Photoheterotrophy and chemoheterotrophy among unicellular blue green algae. Arch Microbiol 87:93–98
  • Rodríguez-Ezpeleta N, Brinkmann H, Burey S, Roure B, Burger G, Löffelhardt W, Bohnert H, Philippe H, Lang B (2005) Monophyly of primary photosynthetic eukaryotes: green plants, red algae, and glaucophytes. Curr Biol 15:1325–1330
  • Summers ML, Meeks JC (1996) Transcriptional regulation of zwf, encoding glucose-6-phosphate dehydrogenase, from the cyanobacterium Nostoc punctiforme strain ATCC 29133. Mol Microbiol 22:473–480
  • Summers ML, Wallis JG, Campbell EL, Meeks JC (1995) Genetic evidence of a major role for glucose-6-phosphate dehydrogenase in nitrogen fixation and dark growth of the cyanobacterium Nostoc sp. strain ATCC 29133. J Bacteriol 177:6184–6194
  • Vásquez-Bermúdez MF, Paz-Yepes J, Herrero A, Flores E (2002) The NtcA activated amt1 gene encodes a permease required for uptake of low concentrations of ammonium in the cyanobacterium Synechococcus sp. PCC 7942. Microbiology 148:861–869
  • Williams JKG (1988) Construction of specific mutations in PSII photosynthetic reaction center by genetic engineering. Methods Enzymol 167:766–778
  • Yang C, Hua Q, Shimizu K (2002) Metabolic flux analysis in Synechocystis using isotope distribution from ¹³C-labeled glucose. Metab Eng 4:202–216
  • Yin JC, Krebs MP, Reznikoff WS (1988) Effect of dam methylation on Tn5 transposition. J Mol Biol 199:35–45
  • Zhang P, Battchikova N, Jansén T, Appel J, Ogawa T, Aro EM (2004) Expression and functional roles of the two distinct NDH-1 complexes and the carbon acquisition complex NdhD3/NdhF3/CupA/Sll1753 in Synechocystis sp. PCC 6803. Plant Cell 16:3326–3340
  • Zhao J, Baba T, Mori H, Schimidzu K (2004) Effect of zwf gene knockout on the metabolism of Escherichia coli grown on glucose or acetate. Metab Eng 6:164–174

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-396f5c00-3e09-4c3c-8239-7b10429910e6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.